Keras 自定义层
1.对于简单的定制操作,可以通过使用layers.core.Lambda层来完成。该方法的适用情况:仅对流经该层的数据做个变换,而这个变换本身没有需要学习的参数.
# 切片后再分别进行embedding和average pooling
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation,Reshape
from keras.layers import merge
from keras.utils import plot_model
from keras.layers import *
from keras.models import Model def get_slice(x, index):
return x[:, index] keep_num = 3
field_lens = 90
input_field = Input(shape=(keep_num, field_lens))
avg_pools = []
for n in range(keep_num):
block = Lambda(get_slice,output_shape=(1,field_lens),arguments={'index':n})(input_field)
x_emb = Embedding(input_dim=100, output_dim=200, input_length=field_lens)(block)
x_avg = GlobalAveragePooling1D()(x_emb)
avg_pools.append(x_avg)
output = concatenate([p for p in avg_pools])
model = Model(input_field, output)
plot_model(model, to_file='model/lambda.png',show_shapes=True) plt.figure(figsize=(21, 12))
im = plt.imread('model/lambda.png')
plt.imshow(im)
这里用Lambda定义了一个对张量进行切片操作的层

2.对于具有可训练权重的定制层,需要自己来实现。
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np class MyLayer(Layer): def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs) def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this somewhere! def call(self, x):
return K.dot(x, self.kernel) def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
参考:
Writing your own Keras layers Keras官方文档,中文文档
keras Lambda自定义层实现数据的切片,Lambda传参数
Keras 自定义层的更多相关文章
- Keras处理已保存模型中的自定义层(或其他自定义对象)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制: from keras.models import load_model # 假设 ...
- 『开发技巧』Keras自定义对象(层、评价函数与损失)
1.自定义层 对于简单.无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现.但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层. 这是一个 Keras2.0 ...
- keras Lambda 层
Lambda层 keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None) 本函数用以对上一层的输 ...
- keras自定义网络层
在深度学习领域,Keras是一个高度封装的库并被广泛应用,可以通过调用其内置网络模块(各种网络层)实现针对性的模型结构:当所需要的网络层功能不被包含时,则需要通过自定义网络层或模型实现. 如何在ker ...
- MXNET:深度学习计算-自定义层
虽然 Gluon 提供了大量常用的层,但有时候我们依然希望自定义层.本节将介绍如何使用 NDArray 来自定义一个 Gluon 的层,从而以后可以被重复调用. 不含模型参数的自定义层 我们先介绍如何 ...
- 『MXNet』第四弹_Gluon自定义层
一.不含参数层 通过继承Block自定义了一个将输入减掉均值的层:CenteredLayer类,并将层的计算放在forward函数里, from mxnet import nd, gluon from ...
- Keras网络层之“关于Keras的层(Layer)”
关于Keras的“层”(Layer) 所有的Keras层对象都有如下方法: layer.get_weights():返回层的权重(numpy array) layer.set_weights(weig ...
- 从头学pytorch(十一):自定义层
自定义layer https://www.cnblogs.com/sdu20112013/p/12132786.html一文里说了怎么写自定义的模型.本篇说怎么自定义层. 分两种: 不含模型参数的la ...
- keras中保存自定义层和loss
在keras中保存模型有几种方式: (1):使用callbacks,可以保存训练中任意的模型,或选择最好的模型 logdir = './callbacks' if not os.path.exists ...
随机推荐
- Ubuntu 12.10 用wubi安装到硬盘中
wubi安装的优势: ubuntu可以像安装软件一样方便的安装.删除,不影响物理机的原有系统 这种方式安装的ubuntu不用担心功能会有所缺失,ubuntu所有的功能都在 和安装了双系统一样,没有什么 ...
- js 的胖箭头问题
我们在声明函数的时候通常是 var foo function(a){ console.log(a) }; 用ES6 我们写成了这样 var foo = a =>{ console.log(a); ...
- 读取Jar中的json文件
现在操作json的jar 都是用的fastjson, 如果需要读取的json文件不在jar包里面,则可以这样获取到: String path = this.getClass().getClassLoa ...
- set /p= 详解
在批处理中回显信息有两个命令,echo和set /p=<nul,它们的共同点在于都是对程序执行信息的屏幕输出,区别在于echo是换行输出,而set /p=<nul是不换行追回输出,这样说大 ...
- bat(续五)-获取批处理文件所在路径
获取批处理文件所在路径 在开发时,经常需要使用批处理运行一些程序,java程序 犹其是这样,往往需要运行时根路径.Hardcode一个路径总是令自己觉得不自在,例如一个java程序从一台 ...
- scrapy之Pymongo
用Pymongo保存数据 爬取豆瓣电影top250movie.douban.com/top250的电影数据,并保存在MongoDB中. items.py class DoubanspiderItem( ...
- 【eclipse】启动不了报错java was started but returned exit code=13
原因是jdk与eclipse的版本不对,一个是32位的一个是64位的.
- poj 1050 To the Max 最大子矩阵和 经典dp
To the Max Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- bash-文件表达式
一点例子: #!/bin/bash # test-file: Evaluate the status of a file FILE=~/.bashrc if [ -e "$FILE" ...
- java中 引用传递、值传递的理解(数组,自定义类,基本数据类型,String类)
代码部分: public static void main(String[] args) { testInt(); testString(); testArray(); testX(); } publ ...