R语言、02 案例2-1 Pelican商店、《商务与经济统计》案例题
编程教材 《R语言实战·第2版》Robert I. Kabacoff
课程教材《商务与经济统计·原书第13版》 (安德森)
P48、案例2-1 Pelican 商店

PS C:\Users\小能喵喵喵\Desktop\R\homework\1_Pelican> tree /f
C:.
│ pelican.r
│
├───.vscode
│ launch.json
│
└───data
PelicanStores.csv
加载数据
编程教材p32 2.3.2
已知数据集为csv文件,所以要按间隔符形式导入。并删除带缺省值的列。
stores <- read.table("./data/PelicanStores.csv",
header = TRUE, row.names = "Customer", sep = ","
)
res1 <- data.frame(stores)
library(dplyr)
res <- res1 %>% select_if(~ !any(is.na(.)))
print(summary(res))
View(res)

主要变量的百分数频数分布
编程教材 p21~30 、p137~143
顾客类型、支付类型
# ^ 百分数频数分布
# @ 客户类型
typeTable1 <- table(res$Type.of.Customer)
typeTable1 <- prop.table(typeTable1) * 100
print(typeTable1)
# @ 支付方法
typeTable2 <- table(res$Method.of.Payment)
typeTable2 <- prop.table(typeTable2) * 100
print(typeTable2)

销售额类型
课程教材 p25 2.2.1
首先我们要确定组宽,公式为 \(近似组宽=\frac{数据最大值-数据最小值}{组数}\)
Max. :287.59 Min. : 13.23。数据项较少的情况下给定5组互不重叠的组数。组宽约等于 55
# @ 销售额频率分组
typeTable3 <- within(res, {
group1 <- NA
group1[Net.Sales >= 13 & Net.Sales < 68] <- "13.0~67.9"
group1[Net.Sales >= 68 & Net.Sales < 123] <- "68.0~122.9"
group1[Net.Sales >= 123 & Net.Sales < 178] <- "123~177.9"
group1[Net.Sales >= 178 & Net.Sales < 233] <- "178~222.9"
group1[Net.Sales >= 233 & Net.Sales < 288] <- "223~287.9"
})
# print(head(sales))
typeTable3 <- table(typeTable3$group1)
typeTable3 <- prop.table(typeTable3) * 100
print(typeTable3)

条形图或圆饼图显示顾客付款方法数量
编程教材 p110~117
条形图
# ^ 支付方式条形图
png(file = "typeTable2_barplot.png")
par(mar = c(10, 4, 4, 0))
barplot(typeTable2,
main = "100个顾客付款方法数量条形图",
xlab = "", ylab = "频数", las = 2
)
dev.off()

圆饼图
# ^ 支付方式圆饼图
png(file = "typeTable2_pie.png")
colors <- c("#4286f4", "#bb3af2", "#ed2f52", "#efc023", "#ea7441")
pie(typeTable2,
main = "Daily Diet Plan",
col = colors, init.angle = 180, clockwise = TRUE
)
dev.off()

顾客类型与净销售额的交叉分组表
编程教材 p137~143 课程教材 p34
# ^ 顾客类型与净销售额的交叉分组表
crossTable <- with(typeTable3, table(Type.of.Customer, group1))
View(addmargins(crossTable))

把交叉分组表中的项目转换成行百分比数或者列百分比数。上面的表格两个类型频数差别太大
# ^ 顾客类型与净销售额的交叉分组表
crossTable <- with(typeTable3, table(Type.of.Customer, group1))
View(crossTable)
# @ 每个顾客类型的行百分比
crossTable <- round(prop.table(crossTable, 1) * 100, 2)
crossTable <- cbind(crossTable, sum = rowSums(crossTable[, 1:5]))
View(crossTable)

普通顾客和促销顾客的净销售额并没有明显区别,但促销顾客出现部分大额净销售额178~287.9,是因为促销活动发的优惠卷促进了消费者的消费欲望,利用消费者的投机心理来促进多买行为。
净销售额与顾客年龄关系的散点图
# ^净销售额与顾客年龄关系的散点图
png(file = "res_scatterplot.png")
plot(
x = res$Net.Sales, y = res$Age,
xlab = "净销售额",
ylab = "年龄",
xlim = c(10, 300),
ylim = c(20, 80),
main = "净销售额与顾客年龄关系的散点图"
)
dev.off()

两个变量之间没有明显相关。但可以发现无论顾客年龄多少,净销售额大多都在0~150区间。
资料
每一行数据求和
cbind(crossTable, sum = rowSums(crossTable[, 1:5]))
使用函数添加的另外一种方式
addmargins(prop.table(mytable, 1), 2) # 加在列
addmargins(prop.table(mytable, 2), 1) # 加在行
RStudio table描述性统计,频数,频率,总和,百分比 - 知乎 (zhihu.com)
cbind函数给列命名
Set Column Names when Using cbind Function in R | Rename Variables (statisticsglobe.com)
scatterplots
R - Scatterplots (tutorialspoint.com)
piechart
R Tutorials (tutorialkart.com)
How to draw Pie Chart in R programming language (tutorialkart.com)
barplot 显示问题
graph - How to display all x labels in R barplot? - Stack Overflow
关于warning问题
带中文字符 R 语言经常会发出警告
options(warn=-1) #忽视任何警告
options(warn=1) #不放过任何警告
options(digits = 2) #将有效输出变为2
prop.table()
How to Use prop.table() Function in R (With Examples) - Statology
prop table in R: How Does the prop.table()
变量分组的三种方法
完整代码
alicepolice/R01_Pelican (github.com)
R语言、02 案例2-1 Pelican商店、《商务与经济统计》案例题的更多相关文章
- 分类算法的R语言实现案例
最近在读<R语言与网站分析>,书中对分类.聚类算法的讲解通俗易懂,和数据挖掘理论一起看的话,有很好的参照效果. 然而,这么好的讲解,作者居然没提供对应的数据集.手痒之余,我自己动手整理了一 ...
- 92、R语言分析案例
1.读取数据 > bank=read.table("bank-full.csv",header=TRUE,sep=";") > 2.查看数据结构 & ...
- R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的 ...
- R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 ------------------------------- ...
- R语言︱线性混合模型理论与案例探究(固定效应&随机效应)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有 ...
- R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算 ...
- R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
- 机器学习实用案例解析(1) 使用R语言
简介 统计学一直在研究如何从数据中得到可解释的东西,而机器学习则关注如何将数据变成一些实用的东西.对两者做出如下对比更有助于理解“机器学习”这个术语:机器学习研究的内容是教给计算机一些知识,再让计算机 ...
- R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
随机推荐
- 基于ABP实现DDD--DDD相关概念
什么是DDD呢?领域驱动设计[DDD]是一种针对复杂需求的软件开发方法.将软件实现与不断发展的模型联系起来,专注于核心领域逻辑,而不是基础设施细节.DDD适用于复杂领域和大规模应用,而不是简单的C ...
- 如何验收安卓PCBA主板的质量和性能
. 版本:v0.1 作者:河东西望 日期:2022-7-15 . 目录 1 有哪些情况需要验收? 2 有哪些验收测试? 2.1 主板测试 2.2 工程测试 2.3 性能测试 2.4 压力测试 2.5 ...
- 基于gRPC编写golang简单C2远控
概述 构建一个简单的远控木马需要编写三个独立的部分:植入程序.服务端程序和管理程序. 植入程序是运行在目标机器上的远控木马的一部分.植入程序会定期轮询服务器以查找新的命令,然后将命令输出发回给服务器. ...
- 1000-ms-HashMap 线程安全安全问题
问题: HashMap是否是线程安全 详解 http://www.importnew.com/21396.html 有源码分析 和代码性能比较 CHM性能最好 HashMap不是线程安全的:Hasht ...
- 将Nginx配置成系统开机启动服务
# 如何将nginx配置成我们的系统服务 # 1.在/usr/lib/systemd/system目录下面配置nginx.service内容 # 如果想要详细了解制作的过程:https://blog. ...
- Educational Codeforces Round 132 (Rated for Div. 2)
Educational Codeforces Round 132 (Rated for Div. 2) A. Three Doors 简述 题意: 有三扇门(1~3), 其中两扇门后面有对应标号门的钥 ...
- WorkflowAsCode 来了,Apache DolphinScheduler 2.0.2 惊喜发布
文章目录 前言 01 新功能 1 WorkflowAsCode 2 企业微信告警方式支持群聊消息推送 02 优化 1 简化元数据初始化流程 2 删除补数日期中的"+1"(天) 03 ...
- Git 04 项目搭建
参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 创建工作目录 ...
- 基于bert_bilstm_crf的命名实体
前言 本文将介绍基于pytorch的bert_bilstm_crf进行命名实体识别,涵盖多个数据集.命名实体识别指的是从文本中提取出想要的实体,本文使用的标注方式是BIOES,例如,对于文本虞兔良先生 ...
- 硬件错误导致的crash
[683650.031028] BUG: unable to handle kernel paging request at 000000000001b790--------------------- ...