aws的上传、删除s3文件以及图像识别文字功能

准备工作

安装aws cli

根据自己的操作系统,下载相应的安装包安装。安装过程很简单,在此不再赘述。

在安装完成之后,运行以下两个命令来验证AWS CLI是否安装成功。参考以下示例,在MacOS上打开Terminal程序。如果是Windows系统,打开cmd。

  • where aws / which aws 查看AWS CLI安装路径
  • aws --version 查看AWS CLI版本
zonghan@MacBook-Pro ~ % aws --version
aws-cli/2.0.30 Python/3.7.4 Darwin/21.6.0 botocore/2.0.0dev34
zonghan@MacBook-Pro ~ % which aws
/usr/local/bin/aws

初始化配置AWS CLI

在使用AWS CLI前,可使用aws configure命令,完成初始化配置。

zonghan@MacBook-Pro ~ % aws configure
AWS Access Key ID [None]: AKIA3GRZL6WIQEXAMPLE
AWS Secret Access Key [None]: k+ci5r+hAcM3x61w1example
Default region name [None]: ap-east-1
Default output format [None]: json
  • AWS Access Key ID 及AWS Secret Access Key可在AWS管理控制台获取,AWS CLI将会使用此信息作为用户名、密码连接AWS服务。

    点击AWS管理控制台右上角的用户名 --> 选择Security Credentials

  • 点击Create New Access Key以创建一对Access Key ID 及Secret Access Key,并保存(且仅能在创建时保存)

  • Default region name,用以指定要连接的AWS 区域代码。每个AWS区域对应的代码可通过 此链接查找。
  • Default output format,用以指定命令行输出内容的格式,默认使用JSON作为所有输出的格式。也可以使用以下任一格式:

    JSON(JavaScript Object Notation)

    YAML: 仅在 AWS CLI v2 版本中可用

    Text

    Table

更多详细的配置请看该文章

s3存储桶开通

该电脑配置的认证用户在aws的s3上有权限访问一个s3的存储桶,这个一般都是管理员给你开通

图像识别文字功能开通

该电脑配置的认证用户在aws的Amazon Textract的权限,这个一般都是管理员给你开通

aws的sdk

import boto3
from botocore.exceptions import ClientError, BotoCoreError

安装上述boto3的模块,一般会同时安装botocore模块

上传文件

方法一

使用upload_file方法来上传文件

import logging
import boto3
from botocore.exceptions import ClientError
import os def upload_file(file_path, bucket, file_name=None):
"""Upload a file to an S3 bucket :param file_name: File to upload
:param bucket: Bucket to upload to
:param object_name: S3 object name. If not specified then file_name is used
:return: True if file was uploaded, else False
""" # If S3 object_name was not specified, use file_name
if object_name is None:
object_name = os.path.basename(file_name) # Upload the file
s3_client = boto3.client('s3')
# s3 = boto3.resource('s3')
try:
response = s3_client.upload_file(file_path, bucket, file_name)
# response = s3.Bucket(bucket).upload_file(file_name, object_name)
except ClientError as e:
logging.error(e)
return False
return True

方法二

使用PutObject来上传文件

import logging
import os
import boto3
from botocore.exceptions import ClientError, BotoCoreError
from django.conf import settings
from celery import shared_task logger = logging.getLogger(__name__) def upload_file_to_aws(file_path, bucket, file_name=None):
"""Upload a file to an S3 bucket
:param file_path: File to upload
:param file_name: S3 object name. If not specified then file_path is used
:return: True if file was uploaded, else False
""" # If S3 object_name was not specified, use file_name
if file_name is None:
file_name = os.path.basename(file_path) # Upload the file
s3 = boto3.resource('s3')
try:
with open(file_path, 'rb') as f:
data = f.read()
obj = s3.Object(bucket, file_name)
obj.put(
Body=data
)
except BotoCoreError as e:
logger.info(e)
return False
return True

删除文件

def delete_aws_file(file_name, bucket):
try:
s3_client = boto3.client("s3")
s3_client.delete_object(Bucket=bucket, Key=file_name)
except Exception as e:
logger.info(e)

图像识别文字

识别发票、账单这种key,value的形式

def get_labels_and_values(result, field):
if "LabelDetection" in field:
key = field.get("LabelDetection")["Text"]
value = field.get("ValueDetection")["Text"]
if key and value:
if key.endswith(":"):
key = key[:-1]
result.append({key: value}) def process_text_detection(bucket, document):
try:
client = boto3.client("textract", region_name="ap-south-1")
response = client.analyze_expense(
Document={"S3Object": {"Bucket": bucket, "Name": document}}
)
except Exception as e:
logger.info(e)
raise "An unknown error occurred on the aws service"
result = {}
for expense_doc in response["ExpenseDocuments"]:
for line_item_group in expense_doc["LineItemGroups"]:
for line_items in line_item_group["LineItems"]:
for expense_fields in line_items["LineItemExpenseFields"]:
get_labels_and_values(result, expense_fields)
for summary_field in expense_doc["SummaryFields"]:
get_labels_and_values(result, summary_field)
return result def get_extract_info(bucket, document):
return process_text_detection(bucket, document)

单纯的识别文字

#Analyzes text in a document stored in an S3 bucket. Display polygon box around text and angled text
import boto3
import io
from io import BytesIO
import sys import math
from PIL import Image, ImageDraw, ImageFont def ShowBoundingBox(draw,box,width,height,boxColor): left = width * box['Left']
top = height * box['Top']
draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline=boxColor) def ShowSelectedElement(draw,box,width,height,boxColor): left = width * box['Left']
top = height * box['Top']
draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],fill=boxColor) # Displays information about a block returned by text detection and text analysis
def DisplayBlockInformation(block):
print('Id: {}'.format(block['Id']))
if 'Text' in block:
print(' Detected: ' + block['Text'])
print(' Type: ' + block['BlockType']) if 'Confidence' in block:
print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL':
print(" Cell information")
print(" Column:" + str(block['ColumnIndex']))
print(" Row:" + str(block['RowIndex']))
print(" Column Span:" + str(block['ColumnSpan']))
print(" RowSpan:" + str(block['ColumnSpan'])) if 'Relationships' in block:
print(' Relationships: {}'.format(block['Relationships']))
print(' Geometry: ')
print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox']))
print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET":
print (' Entity Type: ' + block['EntityTypes'][0]) if block['BlockType'] == 'SELECTION_ELEMENT':
print(' Selection element detected: ', end='') if block['SelectionStatus'] =='SELECTED':
print('Selected')
else:
print('Not selected') if 'Page' in block:
print('Page: ' + block['Page'])
print() def process_text_analysis(bucket, document): #Get the document from S3
s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document)
s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read())
image=Image.open(stream) # Analyze the document
client = boto3.client('textract') image_binary = stream.getvalue()
response = client.analyze_document(Document={'Bytes': image_binary},
FeatureTypes=["TABLES", "FORMS"]) ### Alternatively, process using S3 object ###
#response = client.analyze_document(
# Document={'S3Object': {'Bucket': bucket, 'Name': document}},
# FeatureTypes=["TABLES", "FORMS"]) ### To use a local file ###
# with open("pathToFile", 'rb') as img_file:
### To display image using PIL ###
# image = Image.open()
### Read bytes ###
# img_bytes = img_file.read()
# response = client.analyze_document(Document={'Bytes': img_bytes}, FeatureTypes=["TABLES", "FORMS"]) #Get the text blocks
blocks=response['Blocks']
width, height =image.size
draw = ImageDraw.Draw(image)
print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text
for block in blocks: DisplayBlockInformation(block) draw=ImageDraw.Draw(image)
if block['BlockType'] == "KEY_VALUE_SET":
if block['EntityTypes'][0] == "KEY":
ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'red')
else:
ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'green') if block['BlockType'] == 'TABLE':
ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'blue') if block['BlockType'] == 'CELL':
ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'yellow')
if block['BlockType'] == 'SELECTION_ELEMENT':
if block['SelectionStatus'] =='SELECTED':
ShowSelectedElement(draw, block['Geometry']['BoundingBox'],width,height, 'blue') #uncomment to draw polygon for all Blocks
#points=[]
#for polygon in block['Geometry']['Polygon']:
# points.append((width * polygon['X'], height * polygon['Y']))
#draw.polygon((points), outline='blue') # Display the image
image.show()
return len(blocks) def main(): bucket = ''
document = ''
block_count=process_text_analysis(bucket,document)
print("Blocks detected: " + str(block_count)) if __name__ == "__main__":
main()

aws上传文件、删除文件、图像识别的更多相关文章

  1. github 上传或删除 文件 命令

    git clone https://github.com/onionhacker/bananaproxy.git cd ~/../.. git config --global user.email & ...

  2. java 通过sftp服务器上传下载删除文件

    最近做了一个sftp服务器文件下载的功能,mark一下: 首先是一个SftpClientUtil 类,封装了对sftp服务器文件上传.下载.删除的方法 import java.io.File; imp ...

  3. 通过代码链接ftp上传下载删除文件

    因为我的项目是Maven项目,首先要导入一个Maven库里的包:pom.xml <dependency>            <groupId>com.jcraft</ ...

  4. 七牛云-上传、删除文件,工具类(Day49)

    要求: 1. java1.8以上 2. Maven: 这里的version指定了一个版本范围,每次更新pom.xml的时候会尝试去下载7.5.x版本中的最新版本,你可以手动指定一个固定的版本. < ...

  5. github上传和删除文件(三)

    上传文件: git init git add * git commit -m "description" //git remote rm origin 或查看当前 git remo ...

  6. java FTP 上传下载删除文件

    在JAVA程序中,经常需要和FTP打交道,比如向FTP服务器上传文件.下载文件,本文简单介绍如何利用jakarta commons中的FTPClient(在commons-net包中)实现上传下载文件 ...

  7. 使用eclipse-hadoop插件无法再eclipse操作(上传、删除文件)

    再conf中的hdfs-site.xml添加如下配置: <property><name>dfs.permissions</name><value>fal ...

  8. FastDfs java客户端上传、删除文件

    #配置文件 connect_timeout = 2 network_timeout = 30 charset = UTF-8 http.tracker_http_port = 9090 http.an ...

  9. Struts2 文件上传,下载,删除

    本文介绍了: 1.基于表单的文件上传 2.Struts 2 的文件下载 3.Struts2.文件上传 4.使用FileInputStream FileOutputStream文件流来上传 5.使用Fi ...

随机推荐

  1. Python3的单元测试模块Mock与性能测试模块CProfile

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_92 我们知道写完了代码需要自己跑一跑进行测试,一个写好的程序如果连测试都没有就上到生产环境是不敢想象的,这么做的人不是太自信就是太 ...

  2. JS 字符串转 GBK 编码超精简实现

    前言 JS 中 GBK 编码转字符串是非常简单的,直接调用 TextDecoder 即可: const gbkBuf = new Uint8Array([196, 227, 186, 195, 49, ...

  3. ZJOI2022选做

    \(ZJOI2022\) 众数 发现并不存在\(poly(log(n))\)的做法,那么尝试\(n\sqrt n\) 套路的按照出现次数分组,分为大于\(\sqrt n\)和小于\(\sqrt n\) ...

  4. 【原创】Python 网易易盾滑块验证

    本文仅供学习交流使用,如侵立删! 记一次 网易易盾滑块验证分析并通过 操作环境 win10 . mac Python3.9 selenium.PIL.numpy.scipy.matplotlib 分析 ...

  5. 如何用WebGPU流畅渲染千万级2D物体:基于光追管线

    大家好~我们已经实现了百万级2D物体的流畅渲染,不过是基于计算管线实现的.本文在它的基础上,改为基于光追管线实现,主要进行了CPU和GPU端内存的优化,成功地将渲染的2D物体数量由4百万提高到了2千万 ...

  6. 从零开始Blazor Server(9)--修改Layout

    目前我们的MainLayout还是默认的,这里我们需要修改为BootstrapBlazor的Layout,并且处理一下菜单. 修改MainLayout BootstrapBlazor已经自带了一个La ...

  7. 都说Dapper性能好,突然就遇到个坑,还是个性能问题

    本来闲来无事,准备看看Dapper扩展的源码学习学习其中的编程思想,同时整理一个自己代码的单元测试,为以后的进一步改进打下基础. 突然就发现问题了,源码也不看了,改了好久. 测试Dapper.Lite ...

  8. Java 注解及其底层原理

    目录 什么是注解? 注解的分类 Java自带的标准注解 元注解 @Retention @Documented @Target @Inherited @Repeatable 自定义注解 自定义注解的读取 ...

  9. Git 09 IDEA撤销提交

    参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 如果提交了不 ...

  10. 052_末晨曦Vue技术_处理边界情况之程序化的事件侦听器

    程序化的事件侦听器 点击打开视频讲解更详细 现在,你已经知道了 $emit 的用法,它可以被 v-on 侦听,但是 Vue 实例同时在其事件接口中提供了其它的方法.我们可以: 通过 $on(event ...