LGP5824口胡
万 恶 之 源
十 二 重 计 数 法
先鸽子了
- 球有序,盒子有序
答案明显为 \(m^n\)。
- 球有序,盒子有序,每个盒子最多放一个
答案明显为 \(\binom{m}{n}n!\)。
- 球有序,盒子有序,每个盒子至少放一个
设问题 \(1\) 的方案数为 \(g(n,m)\),那么明显有 \(f(n,m)=g(n,m)-f(n,m-1)=\sum_{i=0}^n(-1)^i(m-i)^n\)。
LGP5824口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- 运行时异常&编译时异常
/* 异常体系: --------| Throwable 所有错误或者异常的父类 --------------| Error(错误) --------------| Exception(异常) 异常一 ...
- chmod以数字形式改变文件权限
Linux文件的三种身份和四种权限,三种身份分别为: u:文件的拥有者 g:文件所属的群组 o:其他用户 对于每个身份,又有四种权限,分别为: r:读取文件的权限(read) w:写入文件的权限(wr ...
- SpringDataJpa打印Sql详情(含参数)
Spring Data Jpa打印Sql详情(带sql参数) 这里使用的是 log4jdbc,yml配置文件里的数据源配置也要做相应的修改 pom文件引入 <dependency> < ...
- 列出ubuntu软件管理工具apt的一些用法(自由总结)
安装软件包 [root@CentOS7 ~]#apt install tree 删除软件包 [root@CentOS7 ~]# apt remove tree 列出仓库软件包 [root@CentOS ...
- PHP面试常考内容之面向对象(2)
PHP面试专栏正式起更,每周一.三.五更新,提供最好最优质的PHP面试内容.继上一篇"PHP面试常考内容之面向对象(1)"发表后,今天更新(2),需要(1)的可以直接点击文字进行跳 ...
- 【ybtoj】贪心算法例题
[基础算法]第二章 贪心算法 例一 奶牛晒衣服 题目描述 有n件衣服,第i件衣服的湿度为h. 在自然条件下,每件衣服每分钟都可以自然晒干A点湿度. 在烘干机作用下,可以选择一件衣服,用一分钟的时间晒干 ...
- python好用的函数或对象
1.ljust.rjust "hello".ljust(10,"x") #将字符串hello做对齐,并且用字符'x'补到10个字符 #输出为:helloxxxx ...
- VS2019如何设置程序以管理员权限启动
最重要的一点.本文解释的是C#项目如何以管理员权限启动. 一个很大的误导项 该图片是C++程序的项目配置属性.C#项目中并找不到.然而网上的很多教程没有说清楚.导致我找了这个菜单找了很久. C#项目的 ...
- gulp更新4.0后的报错(gulp报Did you forget to signal async completion?)
本文首发于青云工作室 原文链接为 https://qystudio.ltd/posts/55153.html 缘起 今天我升级了gulp到4.0,在git三件套之后,网站并没有更新,我便登录了gith ...
- python https 无法访问 SSLError("Can\'t connect to HTTPS URL because the SSL module is not available
1,需要检查python 安装的时候是否支持 https 进入python 环境,import ssl 如果正常导入就可以使用https,不能导入就需要进入下一步. 2,查看系统是否安装了openss ...