题解P1559 运动员最佳匹配问题
简要题意
给出 \(n\) 个白色顶点,\(n\) 个黑色顶点。白色顶点 \(i\) 和黑色顶点 \(j\) 之间的边的权为 \(P_{i,j}\cdot Q_{j,i}\),求二分图最大权匹配。
思路
二分图最大权匹配,可以使用网络流(具体来说,是费用流)求解。如果学过最大流求二分图最大匹配,那么这篇题解是很容易看懂的。
首先,建立一个超级源点 \(S\) 和超级汇点 \(T\)。对于白色顶点 \(i\),连边 \((S,i,1,0)\)。对于黑色顶点 \(j\),连边 \((j,T,1,0)\)。
然后对于白色顶点 \(i\) 和黑色顶点 \(j\),连边 \((i,j,1,P_{i,j}\cdot Q_{j,i})\)。
由于求的是最大权匹配,我们需要以 \(S\) 为源点,\(T\) 为汇点,跑 最大费用最大流,所求得的代价就是答案。
由于边数 \(m = n^2\),所以整体时间复杂度是 \(O(n^3)\) 的。
代码
#include <bits/stdc++.h>
using namespace std;
namespace MCMF{
#define int long long
struct edge{
int nxt,to,cap,cost;
} g[100005];
int head[100005],ec=-1;
void add(int from,int to,int cap,int cost){
g[++ec].nxt=head[from];
g[ec].to=to;
g[ec].cap=cap;
g[ec].cost=cost;
head[from]=ec;
}
void add_edge(int from,int to,int cap,int cost){
add(from,to,cap,cost);
add(to,from,0,-cost);
}
queue<int> q;
bool vis[100005];
int flow[100005];
int dis[100005];
int pre[100005];
int last[100005];
bool spfa(int s,int t){
memset(dis,0x8f,sizeof(dis));
memset(flow,0x7f,sizeof(flow));
memset(vis,0,sizeof(vis));
q.push(s);
vis[s]=1;
dis[s]=0;
pre[t]=-1;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=g[i].nxt){
int v=g[i].to;
if(g[i].cap>0 && dis[v]<dis[u]+g[i].cost){
dis[v]=dis[u]+g[i].cost;
pre[v]=u;
last[v]=i;
flow[v]=min(flow[u],g[i].cap);
if(!vis[v]){
vis[v]=1;
q.push(v);
}
}
}
}
return pre[t]!=-1;
}
pair<int,int> MCMF(int s,int t){
int maxflow=0,mincost=0;
while(spfa(s,t)){
int now=t;
maxflow+=flow[t];
mincost+=flow[t]*dis[t];
while(now!=s){
g[last[now]].cap-=flow[t];
g[last[now]^1].cap+=flow[t];
now=pre[now];
}
}
return make_pair(maxflow,mincost);
}
#undef int
}
int a[105][105][2];
signed main(){
memset(MCMF::head,-1,sizeof(MCMF::head));
MCMF::ec=-1;
int n,m,s,t;
cin>>n;
s=0,t=n<<1|1;
for(int sex=0;sex<=1;sex++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>a[i][j][sex];
}
}
}
for(int i=1;i<=n;i++){
MCMF::add_edge(s,i,1,0);
MCMF::add_edge(i+n,t,1,0);
for(int j=1;j<=n;j++){
MCMF::add_edge(i,j+n,1,a[i][j][0]*a[j][i][1]);
}
}
cout<<MCMF::MCMF(s,t).second<<'\n';
return 0;
}
题解P1559 运动员最佳匹配问题的更多相关文章
- 【题解】P1559 运动员最佳匹配问题
[题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...
- [洛谷 P1559] 运动员最佳匹配问题
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
- P1559 运动员最佳匹配问题[最大费用最大流]
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
- P1559 运动员最佳匹配问题
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
- 洛谷p1559运动员最佳匹配问题
题目 搜索 可行性剪枝 虽然这题目是我搜二分图的标签搜到的 但是n比较小 明显可以暴力 然而只有80分 再加上可行性剪纸就行啦 就是记所有运动员他所能匹配到的最大值. 在我们搜索到第i层的时候 如果他 ...
- KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题
KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...
- P1559 运动员最佳匹配问题 by hyl 天梦
#include<iostream> using namespace std; int n; int maxx[21][21]; int lie[21]; int aa[21]; int ...
- Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)
Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...
- 运动员最佳匹配问题 KM算法:带权二分图匹配
题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...
- [Luogu 1559]运动员最佳匹配问题
Description 题库链接 求 \(2\times N\) 个点的带权二分图最佳匹配. \(1\leq N\leq 20\) Solution 我还是太菜了啊...到现在才学 \(KM\) . ...
随机推荐
- PHP + ELK实现日志记录
一个简单的PHP 文件 效果 full.conf文件 流程: 开启logstash服务之后. 在业务代码里面操作函数写入日志.log logstash通过实践戳获取到用户的变更,取出最后一行数据,发送 ...
- 腾讯云短信SDK-精简版
/** * 腾讯云短信SDK-精简版 * 本模块使用-向腾讯云短信服务器发送请求 * @return json 腾讯服务器返回值-json字符串 */ private function send_sm ...
- Vue中组件化编码使用、实现组件之间的参数传递(实战练习二)
上一章节实现的是静态页面的设计.这一章节实现将数据抽取出来.通过组件间参数的传递来实现 上一章节链接地址:https://blog.csdn.net/weixin_43304253/article/d ...
- 7.pyagem-游戏背景
背景交替滚动 游戏启动后,背景图像不断的向下移动 在视觉上产生角色不断向上移动的错觉 游戏背景不断变化,游戏主角的位置报错不变 实现方案 创建两张背景图 第一张完全和屏幕重合,第二章在屏幕的正上方 ...
- 五、Python操作redis
五.Python操作redis 一.python对redis基本操作 (1)连接redis # 方式1 import redis r = redis.Redis(host='127.0.0.1', p ...
- ThreadLocal的使用及原理解析
# 基本使用 JDK的lang包下提供了ThreadLocal类,我们可以使用它创建一个线程变量,线程变量的作用域仅在于此线程内.<br />用2个示例来展示一下ThreadLocal的用 ...
- 论文笔记 - RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning
Motivation 虽然半监督学习减少了大量数据标注的成本,但是对计算资源的要求依然很高(无论是在训练中还是超参搜索过程中),因此提出想法:由于计算量主要集中在大量未标注的数据上,能否从未标注的数据 ...
- 第2-1-4章 SpringBoot整合FastDFS文件存储服务
目录 5 SpringBoot整合 5.1 操作步骤 5.2 项目依赖 5.3 客户端开发 5.3.1 FastDFS配置 5.3.2 FastDFS配置类 5.3.3 文件工具类 5.3.4 文件上 ...
- redis位图(bitmap)常用命令的解析
描述 bitmap是redis封装的用于针对位(bit)的操作,其特点是计算效率高,占用空间少,常被用来统计用户签到.登录等场景 常用命令及解析 常用命令 setbit key offset va ...
- OpenFeign
OpenFeign-服务间的调用 一.什么是Feign和OpenFeign? 在使用Feign或者OpenFeign前,服务之间的调用路径在函数内部设置: 能不能像controller调用servic ...