大家好,在100天搞定机器学习|Day63 彻底掌握 LightGBM一文中,我介绍了LightGBM 的模型原理和一个极简实例。最近我发现Huggingface与Streamlit好像更配,所以就开发了一个简易的 LightGBM 可视化调参的小工具,旨在让大家可以更深入地理解 LightGBM

网址:

https://huggingface.co/spaces/beihai/LightGBM-parameter-tuning

我只随便放了几个参数,调整这些参数可以实时看到模型评估指标的变化。代码我也放到文章中了,大家有好的优化思路可以留言。下面就详细介绍一下实现过程:

LightGBM 的参数

在完成模型构建之后,必须对模型的效果进行评估,根据评估结果来继续调整模型的参数、特征或者算法,以达到满意的结果。

LightGBM,有核心参数,学习控制参数,IO参数,目标参数,度量参数,网络参数,GPU参数,模型参数,这里我常修改的便是核心参数,学习控制参数,度量参数等。

Control Parameters 含义 用法
max_depth 树的最大深度 当模型过拟合时,可以考虑首先降低 max_depth
min_data_in_leaf 叶子可能具有的最小记录数 默认20,过拟合时用
feature_fraction 例如 为0.8时,意味着在每次迭代中随机选择80%的参数来建树 boosting 为 random forest 时用
bagging_fraction 每次迭代时用的数据比例 用于加快训练速度和减小过拟合
early_stopping_round 如果一次验证数据的一个度量在最近的early_stopping_round 回合中没有提高,模型将停止训练 加速分析,减少过多迭代
lambda 指定正则化 0~1
min_gain_to_split 描述分裂的最小 gain 控制树的有用的分裂
max_cat_group 在 group 边界上找到分割点 当类别数量很多时,找分割点很容易过拟合时

CoreParameters 含义 用法
Task 数据的用途 选择 train 或者 predict
application 模型的用途 选择 regression: 回归时,binary: 二分类时,multiclass: 多分类时
boosting 要用的算法 gbdt, rf: random forest, dart: Dropouts meet Multiple Additive Regression Trees, goss: Gradient-based One-Side Sampling
num_boost_round 迭代次数 通常 100+
learning_rate 如果一次验证数据的一个度量在最近的 early_stopping_round 回合中没有提高,模型将停止训练 常用 0.1, 0.001, 0.003…
num_leaves 默认 31
device cpu 或者 gpu
metric mae: mean absolute error , mse: mean squared error , binary_logloss: loss for binary classification , multi_logloss: loss for multi classification

Faster Speed better accuracy over-fitting
将 max_bin 设置小一些 用较大的 max_bin max_bin 小一些
num_leaves 大一些 num_leaves 小一些
用 feature_fraction 来做 sub-sampling 用 feature_fraction
用 bagging_fraction 和 bagging_freq 设定 bagging_fraction 和 bagging_freq
training data 多一些 training data 多一些
用 save_binary 来加速数据加载 直接用 categorical feature 用 gmin_data_in_leaf 和 min_sum_hessian_in_leaf
用 parallel learning 用 dart 用 lambda_l1, lambda_l2 ,min_gain_to_split 做正则化
num_iterations 大一些,learning_rate 小一些 用 max_depth 控制树的深度

模型评估指标

以分类模型为例,常见的模型评估指标有一下几种:

混淆矩阵

混淆矩阵是能够比较全面的反映模型的性能,从混淆矩阵能够衍生出很多的指标来。

ROC曲线

ROC曲线,全称The Receiver Operating Characteristic Curve,译为受试者操作特性曲线。这是一条以不同阈值 下的假正率FPR为横坐标,不同阈值下的召回率Recall为纵坐标的曲线。让我们衡量模型在尽量捕捉少数类的时候,误伤多数类的情况如何变化的。

AUC

AUC(Area Under the ROC Curve)指标是在二分类问题中,模型评估阶段常被用作最重要的评估指标来衡量模型的稳定性。ROC曲线下的面积称为AUC面积,AUC面积越大说明ROC曲线越靠近左上角,模型越优;

Streamlit 实现

Streamlit我就不再多做介绍了,老读者应该都特别熟悉了。就再列一下之前开发的几个小东西:

核心代码如下,完整代码我放到Github,欢迎大家给个Star

https://github.com/tjxj/visual-parameter-tuning-with-streamlit

from definitions import *

st.set_option('deprecation.showPyplotGlobalUse', False)
st.sidebar.subheader("请选择模型参数:sunglasses:") # 加载数据
breast_cancer = load_breast_cancer()
data = breast_cancer.data
target = breast_cancer.target # 划分训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2) # 转换为Dataset数据格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # 模型训练
params = {'num_leaves': num_leaves, 'max_depth': max_depth,
'min_data_in_leaf': min_data_in_leaf,
'feature_fraction': feature_fraction,
'min_data_per_group': min_data_per_group,
'max_cat_threshold': max_cat_threshold,
'learning_rate':learning_rate,'num_leaves':num_leaves,
'max_bin':max_bin,'num_iterations':num_iterations
} gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=500)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
probs = gbm.predict(X_test, num_iteration=gbm.best_iteration) # 输出的是概率结果 fpr, tpr, thresholds = roc_curve(y_test, probs)
st.write('------------------------------------')
st.write('Confusion Matrix:')
st.write(confusion_matrix(y_test, np.where(probs > 0.5, 1, 0))) st.write('------------------------------------')
st.write('Classification Report:')
report = classification_report(y_test, np.where(probs > 0.5, 1, 0), output_dict=True)
report_matrix = pd.DataFrame(report).transpose()
st.dataframe(report_matrix) st.write('------------------------------------')
st.write('ROC:') plot_roc(fpr, tpr)

上传Huggingface

Huggingface 前一篇文章(腾讯的这个算法,我搬到了网上,随便玩!)我已经介绍过了,这里就顺便再讲一下步骤吧。

step1:注册Huggingface账号

step2:创建Space,SDK记得选择Streamlit

step3:克隆新建的space代码,然后将改好的代码push上去

git lfs install
git add .
git commit -m "commit from $beihai"
git push

push的时候会让输入用户名(就是你的注册邮箱)和密码,解决git总输入用户名和密码的问题:git config --global credential.helper store

push完成就大功告成了,回到你的space页对应项目,就可以看到效果了。

机器学习系列:LightGBM 可视化调参的更多相关文章

  1. 工程能力UP | LightGBM的调参干货教程与并行优化

    这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤: 大学习率,确定估计器参数n_estimators/num_iterations/num_round/num_boost_ro ...

  2. 贪玩ML系列之CIFAR-10调参

    调参方法:网格调参 tf.layers.conv2d()中的padding参数 取值“same”,表示当filter移出边界时,给空位补0继续计算.该方法能够更多的保留图像边缘信息.当图片较小(如CI ...

  3. LightGBM调参笔记

    本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀 ...

  4. 调参、最优化、ml算法(未完成)

    最优化方法 调参方法 ml算法 梯度下降gd grid search lr 梯度上升 随机梯度下降 pca 随机梯度下降sgd  贝叶斯调参 lda 牛顿算法   knn 拟牛顿算法   kmeans ...

  5. 【转载】 自动化机器学习(AutoML)之自动贝叶斯调参

    原文地址: https://blog.csdn.net/linxid/article/details/81189154 ---------------------------------------- ...

  6. LightGBM 调参方法(具体操作)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  7. 【Python机器学习实战】决策树与集成学习(七)——集成学习(5)XGBoost实例及调参

    上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使 ...

  8. 自动调参库hyperopt+lightgbm 调参demo

    在此之前,调参要么网格调参,要么随机调参,要么肉眼调参.虽然调参到一定程度,进步有限,但仍然很耗精力. 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参. hyperopt 需要自己 ...

  9. python 机器学习中模型评估和调参

    在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd f ...

随机推荐

  1. mybatis 日志实现 学习总结03

    日志 1.为什么要使用日志 使用日志能对项目: 调试:日志便于记录程序在之前的运行结果 错误定位 数据分析:日志中蕴含了大量的用户数据,包括点击行为,兴趣偏好等,对公司下一步的战略方向有一定指引作用. ...

  2. 如何构建一个PKM系统

    原文链接 这篇文章是个人知识总结相关的第一篇文章,主要目的是为了阐述我们为什么需要一个 PKM 系统,并且简单对自己这几年亲身形成的PKM 系统进行总结. PKM 是什么? PKM 是 Persona ...

  3. [Java编程思想] 第二章 一切都是对象

    第二章 一切都是对象 2.1 用引用操纵对象   创建一个String引用: String s;   这里所创建的只是引用,并不是对象.   创建一个引用的同时便初始化: String s = &qu ...

  4. nginx配置只允许某个IP或某些IP进行访问

    server{ listen 80; listen 443 ssl; server_name ehall.jerry.plus; ssl_certificate "****.crt" ...

  5. 6月22日 Django中ORM的F查询和Q查询、事务、QuerySet方法大全

    一.F查询和Q查询 F查询 在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较.如果我们要对两个字段的值做比较,那该怎么做呢? Django 提供 F() 来做这样的比较.F() 的实 ...

  6. VS code 设置中文语言环境(实现语言切换自由)

    1.打开vs code,然后按快捷键ctrl+shift+p,输入configure language>回车 2.选择Install Additional Languages... 3.在左侧选 ...

  7. Arduino UNO开发板、Arduino CNC Shield V3.0扩展板、A4988驱动板、grbl固件使用教程

    前言 CNC Shield V3.0可用作雕刻机,3D打印机等的驱动扩展板,板上一共有4路步进电机驱动模块的插槽,可驱动4路不进电机,而每一路步进电机都只需要2个IO口,也就是说,6个IO口就可以很好 ...

  8. 题解0007:小木棍(P1120)

    (错误记录) 题目链接:https://www.luogu.com.cn/problem/P1120 题目描述:几根同样长的木棍,小冥把它们随意砍成了n段: 然后他又吃饱了撑的想把木棍拼上: 但是这个 ...

  9. C#中的类型转换-自定义隐式转换和显式转换

    目录 前言 基础知识 示例代码 实际应用 问题 答案 报错 用户定义的转换必须是转换成封闭类型,或者从封闭类型转换 参考 其他 应用和设计 读音 参考 前言 有时我们会遇到这么一种情况:在json数据 ...

  10. [NPUCTF2020]Baby Obfuscation wp

    整体观察main函数,可以发现用户自定义函数和变量存在混淆,猜测为函数名及变量名asc混淆. 对函数进行分析: Fox1为欧几里得算法求最大公约数 Fox5其实是pow Fox4根据逻辑数学的法则实际 ...