这篇笔记依然属于TD算法的范畴。Multi-Step-TD-Target 是对 TD算法的改进。

9. Multi-Step-TD-Target

9.1 Review Sarsa & Q-Learning

  1. Sarsa

    • 训练 动作价值函数 \(Q_\pi(s,a)\);
    • TD Target 是 \(y_t = r_t + \gamma\cdot Q_\pi(s_{t+1},a_{t+1})\)
  2. Q-Learning
    • 训练 最优动作价值函数 Q-star;
    • TD Target 是 \(y_t = r_t +\gamma \cdot \mathop{max}\limits_{a} Q^*({s_{t+1}},a)\)
  3. 注意,两种算法的 TD Target 的 r 部分 都只有一个奖励 \(r_t\)
  4. 如果用多个奖励,那么 RL 的效果会更好;Multi-Step-TD-Target就是基于这种考虑提出的。

在第一篇强化学习的基础概念篇中,就提到过,agent 会观测到以下这个轨迹:

我们之前只使用一个 transition 来记录动作、奖励,并且更新 TD-Target。一个 transition 包括\((s_t,a_t,s_{t+1},r_t)\),只有一个奖励 \(r_t\)。(如上图蓝框所示)。

这样算出来的 TD Target 就是 One Step TD Target。

其实我们也可以一次使用多个 transition 中的奖励,得到的 TD Target 就是 Multi-Step-TD-Target。如下图蓝框选择了两个 transition,同理接下来可以选后两个 transition

9.2 多步折扣回报

Multi-Step Return.

折扣回报公式为:\(U_t=R_t+\gamma\cdot{U_{t+1}}\);

这个式子建立了 t 时刻和 t+1 时刻的 U 的关系,为了得到多步折扣回报,我们递归使用这个式子:

\(U_t=R_t+\gamma\cdot{U_{t+1}}\\=R_t+\gamma\cdot(R_{t+1}+\gamma\cdot{U_{t+2}})\\=R_t+\gamma\cdot{R_{t+1}}+\gamma^2\cdot{U_{t+2}}\)

这样,我们就可以包含两个奖励,同理我们可以有三个奖励......递归下去,包含 m个奖励为:

\(U_t=\sum_{i=0}^{m-1}\gamma^i\cdot{R_{t+i}}+\gamma^m\cdot{U_{t+m}}\)

即:回报 \(U_t\) 等于 m 个奖励的加权和,再加上 \(\gamma^m\cdot{U_{t+m}}\),后面这一项称为 多步回报

现在我们推出了 多步的 \(U_t\) 的公式,进一步可以推出 多步 \(y_t\) 的公式,即分别对等式两侧求期望,使随机变量具体化

  1. Sarsa 的 m-step TD target:

    \(y_t=∑_{i=0}^{m−1}\gamma^i\cdot r_{t+i}+\gamma^m\cdot{Q_\pi}(s_{t+m},a_{t+m})\)

    注意:m=1 时,就是之前我们熟知的标准 TD Target。

    多步的 TD Target 效果要比 单步 好。

  2. Q-Learning 的 m-step TD target:

    \(y_t = \sum_{i=0}^{m-1}\gamma^i{r_{t+i}}+\gamma^m\cdot\mathop{max}\limits_{a} Q^*({s_{t+m}},a)\)

    同样,m=1时,就是之前的TD Target。

9.3 单步 与 多步 的对比

  • 单步 TD Target 中,只使用一个奖励 \(r_t\);

  • 如果用多步TD Target,则会使用多个奖励:\(r_t,r_{t+1},...,r_{t+m-1}\)

    联想一下第二篇 价值学习 的旅途的例子,如果真实走过的路程占比越高,不考虑 “成本” 的情况下,对于旅程花费时间的估计可靠性会更高。

  • m 是一个超参数,需要手动调整,如果调的合适,效果会好很多。

x. 参考教程

强化学习-学习笔记9 | Multi-Step-TD-Target的更多相关文章

  1. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  2. 强化学习读书笔记 - 09 - on-policy预测的近似方法

    强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and A ...

  3. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  4. 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)

    强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...

  5. 强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces)

    强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces) 学习笔记: Reinforcement Learning: An Introduction, Richard S. S ...

  6. 强化学习读书笔记 - 10 - on-policy控制的近似方法

    强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton an ...

  7. 强化学习-学习笔记4 | Actor-Critic

    Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...

  8. 强化学习-学习笔记8 | Q-learning

    上一篇笔记认识了Sarsa,可以用来训练动作价值函数\(Q_\pi\):本篇来学习Q-Learning,这是另一种 TD 算法,用来学习 最优动作价值函数 Q-star,这就是之前价值学习中用来训练 ...

  9. 强化学习-学习笔记14 | 策略梯度中的 Baseline

    本篇笔记记录学习在 策略学习 中使用 Baseline,这样可以降低方差,让收敛更快. 14. 策略学习中的 Baseline 14.1 Baseline 推导 在策略学习中,我们使用策略网络 \(\ ...

随机推荐

  1. XCTF练习题---MISC---simple_transfer

    XCTF练习题---MISC---simple_transfer flag:HITB{b3d0e380e9c39352c667307d010775ca} 解题步骤: 1.观察题目,下载附件 2.经过观 ...

  2. 印尼医疗龙头企业Halodoc的数据平台转型之路:数据平台V1.0

    1. 摘要 数据是每项技术业务的支柱,作为一个健康医疗技术平台,Halodoc 更是如此,用户可以通过以下方式与 Halodoc 交互: 送药 与医生交谈 实验室测试 医院预约和药物 所有这些交互都会 ...

  3. python使用虚拟环境venv

    venv模块支持使用自己的站点目录创建轻量级"虚拟环境",可选择与系统站点目录隔离.每个虚拟环境都有自己的Python二进制文件(与用于创建此环境的二进制文件的版本相匹配),并且可 ...

  4. 国产开源优秀新一代MPP数据库StarRocks入门之旅-数仓新利器(上)

    概述 背景 Apache Doris官方地址 https://doris.apache.org/ Apache Doris GitHub源码地址 https://github.com/apache/i ...

  5. mysqldump速查手册

    一.mysqldump用法 1.1 常见选项 --all-databases, -A: 备份所有数据库 --databases, -B: 用于备份多个数据库,如果没有该选项,mysqldump把第一个 ...

  6. 109_Power Pivot客户ABC(帕累托)分析度量值写法(非计算列)

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 1.背景 客户ABC分析,一般的套路是在计算列中把客户ABC分类,便于后续维度使用.今天用度量值的方式写一个ABC的分类. ...

  7. 使用 oh-my-posh 美化 windows terminal,让其接近oh-my-zsh

    本文旨在快速让你进行美化,少踩一些坑,原文出自我的博客:prettier-windows-terminal-with-oh-my-posh 为了同 iterm2 下的 oh-my-zsh 保持基本一致 ...

  8. 判断数据类型(typeof&instanceof&toString)

    一.数据类型 ES6规范中有7种数据类型,分别是基本类型和引用类型两大类 基本类型(简单类型.原始类型):String.Number.Boolean.Null.Undefined.Symbol 引用类 ...

  9. 【SpringCloud原理】万字剖析OpenFeign之FeignClient动态代理生成源码

    年前的时候我发布两篇关于nacos源码的文章,一篇是聊一聊nacos是如何进行服务注册的,另一篇是一文带你看懂nacos是如何整合springcloud -- 注册中心篇.今天就继续接着剖析Sprin ...

  10. 目标检测复习之Faster RCNN系列

    目标检测之faster rcnn系列 paper blogs1: 一文读懂Faster RCNN Faster RCNN理论合集 code: mmdetection Faster rcnn总结: 网络 ...