单源最短路问题:OJ5——低德地图


本题就是一道单源最短路问题。由于是稀疏图,我们采用Dijkstra算法。
Dijkstra算法原理
Dijkstra算法的步骤
我们把所有的节点分为两个集合:被选中的(visited==1) 和 未被选中的(visited==0),对于每个点,我们在操作中更新其到源点的距离。这个算法中用到贪心思想。
我们进行如下操作:
1.在所有未选中的节点中,找出目前距离源点距离最近的点,记为now,并将now移动到“被选中”集合(visited【now】=1).
2.把所有和now相连的节点next的距离进行更新,取dis【now】+l和dis【next】的最小值,从而始终维护dis数组使得其中存储了目前选取点集合中的路径最小值。
3.从s开始循环上述步骤直至进行到d。
这样,我们就得到了最短路的长度dis【d】,同时可以记录最短路的路径:只需在上述2步骤中记录下next节点的最短路是从哪个节点找到了,再回溯回去即可。
Dijkstra贪心的证明
对于贪心算法,我们在使用的时候应该考虑其正确性。
首先,dijkstra算法只适用于正边权图,图中不能存在负值边(因为dijk算法只能对未被选中的点进行距离更新,而已经选中的点在存在负边的情况下可能存在更短路)
这里不给出详细的证明,证明参见:Dijkstra算法介绍+正确性证明+性能分析_月本_诚的博客-CSDN博客_dijkstra算法正确性证明我们只需要知道,对于一条最短路,它的从s1到s2的一部分就是s1到s2的最短路。这样,前面的算法就很好理解了。
可以采用归纳法证明,假设在Dijkstra算法中找到的最短路为V:v1v2.....vn,对于i<k原算法都正确,而在i=k时不正确。
这时我们考虑到我们在维护数组时保证了i=k继承了i=k-1的最短路,因此不可能存在前半部分是最短路,后面不是的情况。
Dijkstra的代码实现
这里直接给出本题的ac代码,再分别对不同的坑点进行解释。

#include<cstdio>
#include<cstdlib>
#include<vector>
#include<queue>
#include<utility>
using namespace std;
typedef pair<int,int> P;
struct node{vector<int> next;vector<int> length;}node[30005];
vector<int> path[30005][2];
vector<int> pre[30005][2];
int sum[2],n,m,s,d,pathsum=0;
void print(int i){
printf("start\n");
int li=path[1][i].size();for(int j=li-1;j>=0;j--)printf("%d\n",path[1][i][j]);
printf("end\n");printf("%d\n",sum[i]);
}
void push(int now,int i,int ii){
pathsum=i>pathsum?i:pathsum;
path[i][ii].push_back(now);
int ll=pre[now][ii].size();
for(int j=0;j<ll;j++){
int last=pre[now][ii][j];
if(j)path[i+j][ii].push_back(now);
push(last,i+j,ii);
}
}
int dijk(int i){
bool v[30005]={0};int dis[30005];priority_queue<P,vector<P>,greater<P>> calc;
for(int i=0;i<=30000;i++){dis[i]=100000000;P x(100000000,i);calc.push(x);}
int now;P x(0,s);calc.push(x);dis[s]=0;
while(!v[d]){
int min=100000000,minj=0;
P x=calc.top();min=x.first;minj=x.second;calc.pop();
while(v[minj]){P x=calc.top();min=x.first;minj=x.second;calc.pop();}
now=minj;v[now]=1;if(min>=100000000)return 100000000;
int l=node[now].next.size();
for(int j=0;j<l;j++){
int xx=node[now].next[j],ll=node[now].length[j];
P x(dis[now]+ll,xx);calc.push(x);
if(dis[now]+ll<dis[xx]){dis[xx]=dis[now]+ll;pre[xx][i].clear();pre[xx][i].push_back(now);}
else if(dis[now]+ll==dis[xx])pre[xx][i].push_back(now);
}
}
push(d,1,i);return dis[d];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y,k;scanf("%d%d%d",&x,&y,&k);
node[x].next.push_back(y);node[x].length.push_back(k);
node[y].next.push_back(x);node[y].length.push_back(k);
}
scanf("%d%d",&s,&d);
sum[1]=dijk(1);
for(int q=1;q<=pathsum;q++){
int l=path[q][1].size();
for(int i=1;i<l;i++){
int ss=path[q][1][i],dd=path[q][1][i-1];
int ll=node[ss].next.size();int deltaj=0;
for(int j=0;j<ll;j++){if(node[ss].next[j]==dd){deltaj=j;break;}}
node[ss].length[deltaj]=100000000;
int ll1=node[dd].next.size();int deltaj1=0;
for(int j=0;j<ll;j++){if(node[dd].next[j]==ss){deltaj1=j;break;}}
node[dd].length[deltaj1]=100000000;
}
}
sum[0]=dijk(0);print(1);if(sum[0]<100000000&&sum[0]>sum[1])print(0);
}
首先这道题并不是要求我们找到最短路,而是要求找到所谓的“近似最短路”
它的要求是:不与任何一条最短路的任何一条边重合
因此我们的思路是:找到所有的最短路,并删除这些边。
下面我介绍一下我在做这道题的时候遇到的一些坑点:
如何找到所有的最短路?
我发现在我的dijk算法中,只能得到一条最短路,因为我起初用一个pre数组存储n个顶点在最短路中的上一个顶点,数组大小开了n,因此每个顶点只能存唯一一个pre点,也就不能得到所有的路。
后来,我在每个顶点处都开了一个vector,来记录所有可能的pre节点。

int l=node[now].next.size();
for(int j=0;j<l;j++){
int xx=node[now].next[j],ll=node[now].length[j];
P x(dis[now]+ll,xx);calc.push(x);
if(dis[now]+ll<dis[xx]){dis[xx]=dis[now]+ll;pre[xx][i].clear();pre[xx][i].push_back(now);}
else if(dis[now]+ll==dis[xx])pre[xx][i].push_back(now);
}
然后我设计了一个递归函数来得到所有最短路中的边。但我并没有得到左右最短路,更像是得到了一棵由最短路组成的树,树根在终点d处。

void push(int now,int i,int ii){
pathsum=i>pathsum?i:pathsum;
path[i][ii].push_back(now);
int ll=pre[now][ii].size();
for(int j=0;j<ll;j++){
int last=pre[now][ii][j];
if(j)path[i+j][ii].push_back(now);
push(last,i+j,ii);
}
}
然后我再删掉这些边进行dijk寻路就可以了。
如何优化Dijkstra算法?

然而算法逻辑正确并不足够通过oj,目前的Dijkstra算法复杂度达到了惊人的O(n^2),tle也是必然的。
仔细思考之后,我想到每次寻找最近节点的步骤非常浪费时间:
原代码:

int min=100000000,minj=0;
for(int j=0;j<n;j++){if(min>dis[j]&&!v[j]){min=dis[j],minj=j;}}
而我们完全可以将当前的距离写进一个优先队列中,每次在这个最小堆中取最小值就可以了。至于更新的时候,如果有更小的值可以直接加入,无需删去原来的值,毕竟我们始终只会用到最小的值。
优化后代码如下:

P x=calc.top();min=x.first;minj=x.second;calc.pop();
while(v[minj]){P x=calc.top();min=x.first;minj=x.second;calc.pop();}
(其实是一个dowhile结构)
然后复杂度就降低到lgn了

彩蛋:附著名oier的ac代码如下

#include<bits/stdc++.h>
using namespace std;
#define N 33333
#define M 833333
#define ll long long
#define PI pair<ll,int>
#define pb push_back
#define mp make_pair
priority_queue<PI,vector<PI>,greater<PI>>q;
int fir[N],l[M],to[M],w[M],ec=1,ban[M],S,T;
void add(int a,int b,int v){l[++ec]=fir[a];fir[a]=ec;w[ec]=v;to[ec]=b;}
int n,m,pre[N],sta[N],tp; ll d[N],D[N];
int inSP[N];
void dijk(ll*d,int S,int T,int o){
memset(d,0x3f,N<<3);
q.push(mp(d[S]=0,S));
while(q.size()){
int x=q.top().second;
ll D=q.top().first;
q.pop();
if(D^d[x])continue;
for(int i=fir[x],y;i;i=l[i]){
y=to[i];
if(d[y]>D+w[i]&&!ban[i])
q.push(mp(d[y]=D+w[i],y)),pre[y]=x;
}
}
if(o&&d[T]<1e16){
puts("start");
int p=T;
while(p^S) sta[++tp]=p=pre[p];
while(tp) printf("%d\n",sta[tp--]);
printf("%d\nend\n%lld\n",T,d[T]);
} }
int main(){
cin>>n>>m;
for(int i=0,a,b,W;i<m;++i)
scanf("%d%d%d",&a,&b,&W),add(a,b,W),add(b,a,W);
cin>>S>>T;
dijk(d,S,T,2);
dijk(D,T,S,0);
for(int i=0;i<n;++i)
inSP[i]=d[i]+D[i]==d[T];
for(int i=2,x,y;i<=ec;++i){
x=to[i^1];
y=to[i];
if(inSP[x]&&inSP[y]&&d[y]==d[x]+w[i])
ban[i]=ban[i^1]=1;
}
dijk(d,S,T,1);
}
单源最短路问题:OJ5——低德地图的更多相关文章
- dijkstra算法解决单源最短路问题
简介 最近这段时间刚好做了最短路问题的算法报告,因此对dijkstra算法也有了更深的理解,下面和大家分享一下我的学习过程. 前言 呃呃呃,听起来也没那么难,其实,真的没那么难,只要弄清楚思路就很容易 ...
- Bellman-Ford算法解决单源最短路问题
#include<stdio.h> #include<stdlib.h> #include<stdbool.h> #define max 100 #define I ...
- hdu 2544 单源最短路问题 dijkstra+堆优化模板
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 单源最短路问题--朴素Dijkstra & 堆优化Dijkstra
许久没有写博客,更新一下~ Dijkstra两种典型写法 1. 朴素Dijkstra 时间复杂度O(N^2) 适用:稠密图(点较少,分布密集) #include <cstdi ...
- 单源最短路问题 Dijkstra 算法(朴素+堆)
选择某一个点开始,每次去找这个点的最短边,然后再从这个开始不断迭代,更新距离. 代码: 朴素(vector存图) #include <iostream> #include <cstd ...
- bellman-ford 单源最短路问题 图解
核心思想:松弛操作 对于边(u,v),用dist(u)和(u,v)的和尝试更新dist(v): dist(v) = min(dist(v) , dist(u)+l(u,v) 注:dist(i)为源 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- UVa 12661 (单源最短路) Funny Car Racing
题意: 有一个赛车跑道,可以看做一个加权有向图.每个跑道(有向边)还有一个特点就是,会周期性地打开a秒,然后关闭b秒.只有在赛车进入一直到出来,该跑道一直处于打开状态,赛车才能通过. 开始时所有跑道处 ...
- 利用分支限界法求解单源最短路(Dijkstra)问题
分支限界法定义:采用Best fist search算法,并使用剪枝函数的算法称为分支界限法. 分支限界法解释:按Best first的原则,有选择的在其child中进行扩展,从而舍弃不含有最优解的分 ...
随机推荐
- 使用salt-cloud创建openstack虚拟机
salt-cloud也是基于openstack来做的,它可以支持多种云的使用.比如:Aliyun.Azure.DigitalOcean.EC2.Google Compute Engine.HP Clo ...
- 学习Squid(一)
第1章 Squid介绍 1.1 缓存服务器介绍 缓存服务器(英文意思cache server),即用来存储(介质为内存及硬盘)用户访问的网页,图片,文件等等信息的专用服务器.这种服务器不仅可以使用户可 ...
- canvas —— globalCompositeOperation
globalCompositeOperation 属性设置或返回如何将一个源(新的)图像绘制到目标(已有)的图像上. 源图像 = 您打算放置到画布上的绘图. 目标图像 = 您已经放置在画布上的绘图. ...
- 要多简单就有多简单的H5拍照加水印
来一个简单粗暴的gif演示图 先来html 内容 <video id="video" width="320" height="240" ...
- sqlite的Query方法操作和参数详解
query()方法实际上是把select语句拆分成了若干个组成部分,然后作为方法的输入参数: SQLiteDatabase db = databaseHelper.getWritableDatabas ...
- electron制作聊天界面(仿制qq)
效果图: 样式使用scss和flex布局 这也是制作IM系统的最后一个界面了!在制作之前参考了qq和千牛 需要注意的点 qq将滚动条美化了 而且在无操作的情况下是不会显示的 滚动条美化 ::-webk ...
- Value注解获取值一直为Null
@Value("${jwt.tokenHeader}") private String tokenHeader; 常见的错误解决办法如下: 1.使用static或final修饰了t ...
- Python IDLE清屏
在学习和使用Python的过程中,少不了要与Python IDLE打交道.但使用 Python IDLE 都会遇到一个常见而又懊恼的问题--要怎么清屏? 答案是为IDLE增加一个清屏的扩展ClearW ...
- 小程序滚动事件之头部渐隐渐现demo
效果图: ==> 代码: //test1.wxml <view class='header' style="opacity:{{opacityStyle}}" hid ...
- Coursera 学习笔记|Machine Learning by Standford University - 吴恩达
/ 20220404 Week 1 - 2 / Chapter 1 - Introduction 1.1 Definition Arthur Samuel The field of study tha ...