AQS源码探究之竞争锁资源
AQS源码探究---竞争锁资源
我们进入ReentrantLock源码中查看其内部类
- Sync 对AQS进行扩展公共方法并定义抽象方法的抽象类
 - FaireSync 实现公平锁的AQS的实现类
 - UnFairSync 实现非公平锁的ASQ的实现类
 
我使用例子进行的debug,然后一步一步看源码。例子在文章最后面
以下流程皆以非公平锁为例
线程竞争锁资源
AQS的state解释:
- 0 表示锁没有被占用
 - 1 表示锁被占用了
 - > 1 表示锁被重入了 PS: ReentrantLock是可重入锁
 
获得锁执行流程
- 创建ReentrantLock对象
 
// ReetrantLock 默认创建一个非公平锁的AQS
public ReentrantLock() {
    sync = new NonfairSync();
}
- 然后我们调用lock方法请求锁
- 成功,即将锁的owner主人设置为当前线程,接下来就是回到线程中执行线程的任务。
 - 失败,即进入acquire的流程。
 
 
static final class NonfairSync extends Sync {
    final void lock() {
        // 请求锁资源,如果将锁的state状态0改成1,即为成功获得锁资源
        if (compareAndSetState(0, 1))
            // 将锁的拥有者设置为当前线程,里面就一句话没啥好看的
            setExclusiveOwnerThread(Thread.currentThread());
        else
            acquire(1);
    }
}
下面是AQS阻塞链表是由一个双向链表组成的。
阻塞链表的成员对象Node的waitState状态解释:
- CANCELLED = 1 表示线程已经被取消了
 - SIGNAL = -1 表示后继线程需要unpark解除阻塞,下图即表示。
 

锁竞争失败流程
- 进入acquire方法
 
public final void acquire(int arg) {
	// 首先再次请求锁
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}
- 首先会执行tryAcquire方法
 
protected final boolean tryAcquire(int acquires) { // 注意:我们进入的是非公平锁的tryAcquire实现
    return nonfairTryAcquire(acquires);
}
再次进入nonfairTryAcquire(acquires)方法
final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();  // 获得当前线程
    int c = getState();    // 获得当前线程的状态
    if (c == 0) {     // 如果状态为0即锁资源被释放现在处于空闲状态,会尝试获得锁
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {  // 这里是可重入代码,后面解释
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;   // 失败返回false。如果是成功获得锁或者是重入都会返回true。需要了解
}
- 回到步骤1代码,如果是失败返回false取反true,就会继续执行if语句。成功取反后false就直接结束当前语句,就会直接回到线程执行线程代码了。
 
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) // 这里是两个方法,需要一个一个来
        selfInterrupt();
}
// acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
- 执行addWaiter方法,概括就是将没有获得锁的加入一个等待链表中。
 
private Node addWaiter(Node mode) {  // 刚创建的时候mode为null的
    Node node = new Node(Thread.currentThread(), mode);  // 首先创建一个node
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;  // 将尾部的引用给pred变量
    if (pred != null) {   // 刚开始创建的时候pred是null的
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {   // 这个代码块就是cas尝试加入双向链表尾部
            pred.next = node;
            return node;
        }
    }
    enq(node);    // 这里是创建head和tail进的方法,和if (compareAndSetTail(pred, node))失败进入
    return node; // 方法返回由当前线程创建的node
}
enq方法的进入条件
- 进行head和tail的初始化。
 - 多线程下如果调用enq方法失败,就是当别的线程也进入了等待链表,此时tail就会改变,上面的cas就会false,没有返回,就会进行enq方法
 
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;  // 如果尾部为空就会进行初始化,没有的话不断进行cas尝试插入链表尾部。
        if (t == null) { // Must initialize 初始化链表
            if (compareAndSetHead(new Node()))   // 我们可以看到head是指向一个没有参数的node对象的
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node; // 注意t还是引用旧值,而tail已经更新引用为node了。
                return t;
            }
        }
    }
}
疑问:
compareAndSetTail(t, node) 方法在我初次遇见的时候很奇怪。为什么t还算指向了旧的node对象
因为这个compareAndSetTail只是将tail的引用改变成了node,注意这边改变的是tail的引用。并没有去改变pred的引用。传入pred只是保证我们获得的尾部和现在的尾部是一样的,才能进行安全的尾部连接。
这也是我基础不太扎实的原因吧。
- 执行acquireQueued方法,再次尝试获得锁,和进行阻塞
 
final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();  // 获得node前驱
            if (p == head && tryAcquire(arg)) {  // 如果是第一个等待锁的线程,再次请求锁
                setHead(node);  // 请求成功就将该线程的node直接移出等待链表
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&   // 检查状态并更新前驱状态为-1,即表示有后继节点阻塞了。
                parkAndCheckInterrupt()) // 进入park,如果被中断返回true
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}
在parkAndCheckInterrupt方法时进行park阻塞。
private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}
线程释放锁
- 调用unlock方法
 
public void unlock() {
    sync.release(1);
}
- 调用release方法
 
public final boolean release(int arg) {
    if (tryRelease(arg)) {  // 进入tryRelease即尝试释放
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}
进入tryRelease的ReentrantLock实现
protected final boolean tryRelease(int releases) {
    int c = getState() - releases;   // 获得当前的状态
    if (Thread.currentThread() != getExclusiveOwnerThread())  // 非获得锁线程抛异常
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {   // 如果没有重入直接释放锁将owner置为null
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);   // 由于锁资源只有一个只有一个线程能更新状态,所以更新AQS状态不需要cas
    return free;
}
- 继续回到release方法,释放锁成功返回true,进入条件语句
 
public final boolean release(int arg) {
    if (tryRelease(arg)) {  // 进入tryRelease即尝试释放
        Node h = head;
        if (h != null && h.waitStatus != 0) // 阻塞队列存在即头节点不为空且头节点的状态不为0,为0表示后面没节点阻塞了
            unparkSuccessor(h);
        return true;
    }
    return false;
}
- 进入unparkSuccessor方法,就不贴源码了,简单介绍一下就是将头节点置空,将阻塞队列中第一个等待的node解除阻塞,将他放出来去抢锁资源。
 
非公平锁和公平锁的区别
看完源码,整明白了就是锁资源释放后会放第一个等待线程去抢锁。
我就疑惑了,那明明就是公平的啊。
其实只是释放了线程,但是同时有其他的线程进行争抢,就又会变成争抢的情况,还是可能被其他线程抢走锁资源。
公平锁
就会判断如果阻塞链表是否为空,为空才能进行获取锁资源,又或者是锁重入
不然就是直接加入阻塞链表,从而实现了公平。
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}
DEBUG例子
@Slf4j
public class Test1 {
    public static void main(String[] args) {
        ReentrantLock lock = new ReentrantLock();
        // Reentrantlock锁资源被拥有
        new Thread(()->{
            lock.lock();
            try{
                log.debug("运行中");
                try {
                    Thread.sleep(2000000000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }finally {
                lock.unlock();
            }
        }).start();
        // ReentrantLock阻塞链表初始化
        new Thread(()->{
            lock.lock();
            try{
                log.debug("运行中");
                try {
                    Thread.sleep(2000000000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }finally {
                lock.unlock();
            }
        }).start();
        // ReentrantLock 再次向阻塞链表添加线程
        new Thread(()->{
            lock.lock();
            try{
                log.debug("运行中");
                try {
                    Thread.sleep(2000000000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }finally {
                lock.unlock();
            }
        }).start();
    }
}
												
											AQS源码探究之竞争锁资源的更多相关文章
- 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放
		
上期的<全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础>中介绍了什么是AQS,以及AQS的基本结构.有了这些概念做铺垫之后,我们就可以正 ...
 - 硬核剖析Java锁底层AQS源码,深入理解底层架构设计
		
我们常见的并发锁ReentrantLock.CountDownLatch.Semaphore.CyclicBarrier都是基于AQS实现的,所以说不懂AQS实现原理的,就不能说了解Java锁. 上篇 ...
 - AQS源码深入分析之独占模式-ReentrantLock锁特性详解
		
本文基于JDK-8u261源码分析 相信大部分人知道AQS是因为ReentrantLock,ReentrantLock的底层是使用AQS来实现的.还有一部分人知道共享锁(Semaphore/Count ...
 - ReentrantLock 与 AQS 源码分析
		
ReentrantLock 与 AQS 源码分析 1. 基本结构 重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...
 - CyclicBarrier源码探究 (JDK 1.8)
		
CyclicBarrier也叫回环栅栏,能够实现让一组线程运行到栅栏处并阻塞,等到所有线程都到达栅栏时再一起执行的功能."回环"意味着CyclicBarrier可以多次重复使用,相 ...
 - AQS源码详细解读
		
AQS源码详细解读 目录 AQS源码详细解读 基础 CAS相关知识 通过标识位进行线程挂起的并发编程范式 MPSC队列的实现技巧 代码讲解 独占模式 独占模式下请求资源 独占模式下的释放资源 共享模式 ...
 - AQS源码深入分析之共享模式-你知道为什么AQS中要有PROPAGATE这个状态吗?
		
本文基于JDK-8u261源码分析 本篇文章为AQS系列文的第二篇,前文请看:[传送门] 第一篇:AQS源码深入分析之独占模式-ReentrantLock锁特性详解 1 Semaphore概览 共享模 ...
 - AQS源码深入分析之条件队列-你知道Java中的阻塞队列是如何实现的吗?
		
本文基于JDK-8u261源码分析 1 简介 因为CLH队列中的线程,什么线程获取到锁,什么线程进入队列排队,什么线程释放锁,这些都是不受我们控制的.所以条件队列的出现为我们提供了主动式地.只有满足指 ...
 - 深度分析ReentrantLock源码及AQS源码,从入门到入坟,建议先收藏!
		
一.ReentrantLock与AQS简介 在Java5.0之前,在协调对共享对象的访问时可以使用的机制只有synchronized和volatile.Java5.0增加了一种新的机制:Reentra ...
 
随机推荐
- IOC 的优点是什么?
			
IOC 或 依赖注入把应用的代码量降到最低.它使应用容易测试,单元测试不再需 要单例和 JNDI 查找机制.最小的代价和最小的侵入性使松散耦合得以实现.IOC 容器支持加载服务时的饿汉式初始化和懒加载 ...
 - 数据分析之Pandas操作
			
Pandas pandas需要导入 import pandas as pd from pandas import Series,DataFrame import numpy as np 1 Serie ...
 - 学习openldap03
			
ldap统一认证架构 一.ldap目录服务介绍什么是目录服务? 目录是一类为了浏览和搜索数据而设计的特殊的数据库.例如,为人所熟知的微软公司的活动目录(active directory)就是目录数据 ...
 - 学习Puppet(三)
			
一.相关概念: 1. puppet基于C/S架构,使用ruby编写,在类UNIX平台上集中配置管理系统,它可以管理配置文件.用户.cron任务.软件包.系统服务. 2. puppet把系统实体称为 ...
 - (stm32f103学习总结)—stm32中断系统
			
一.NVIC 介绍 NVIC 英文全称是 Nested Vectored Interrupt Controller,中文意思就是嵌套向量中断控制器,它属于 M3 内核的一个外设,控制着芯片的中断相关功 ...
 - html 不常用标签介绍
			
文本元素 <wbr> 如果单词太长,或者您担心浏览器会在错误的位置换行,那么您可以使用 <wbr> 元素来添加 Word Break Opportunity(单词换行时机).英 ...
 - 在vue中创建多个ueditor实例
			
简介 在vue中创建多个ueditor实例,我使用neditor,其实就是把ueditor样式美化了下,其他和ueditor几乎一样 截图 源码地址 https://github.com/oblivi ...
 - 解决使用 swiper 常见的问题
			
使用 swiper 的过程中个人总结 1. swiper插件使用方法, 直接查看文档 swiper基础演示 swiper API文档 2.swiper近视初始化时, 其父级元素处于隐藏状态(displ ...
 - PAT B1031查验身份证
			
一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8, ...
 - java中自动插入一个默认的构造函数,这到底怎么回事?
			
1.2 当没有任何构造函数,java编译器,会插入一个默认的构造函数 见下面的例子: class Line { double x = 0.02; double y; } publ ...