题目大意:

给出两个集合,第一个集合数的乘积是分子,第二个集合的数的乘积是分母,要求够造一个同样的集合,但是得到的分数是最简分数。

分析:

寻找思路并不复杂,对两个集合的每个数进行质因数分解,然后统计整个集合的质因数分解情况,再将两个集合的质因数的次数大减小即可。构造时使两个集合中元素的个数不变,尽可能地构造成原先集合的数,如果不行就填一个 \(1\)。但质因数分解的过程中不能采用 \(O(\sqrt n)\) 的复杂度,会超时,接下来介绍本题中进行质因数分解的方法。

其实也不是很复杂,就是对于每个被分解的数,优先除以它最大的质因数即可。当然,需要提前处理一下每个数最大的质因数。

AC代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int M = 1e7;
const int MAXN = 1e4;
int n,m;
map<int,int> cnt1,cnt2;
set<int> s;
int prime[M + 5],up[M + 5],down[M + 5],a[M + 5],bb[M + 5]; signed main(){
//freopen("B.out","r",stdin);
//prime.push_back(9999991);
for(int i = 2; i <= M; i++){//预处理每个数的最大质因数
if(prime[i] == 0){
prime[i] = i;
for(int j = i + i; j <= M + 3; j+=i){
prime[j] = i;
}
}
}
cin >> n >> m;
for(int i = 1; i <= n; i++){
cin >> a[i];
int j;
for(j = a[i]; j > 1; j /= prime[j]){//质因数分解
s.insert(prime[j]);
up[prime[j]]++;//存储分子的质因数分解情况
}
}
for(int i = 1; i <= m; i++){
cin >> bb[i];
int j;
for(j = bb[i]; j > 1; j /= prime[j]){//质因数分解
s.insert(prime[j]);
down[prime[j]]++;//存储分母的质因数分解情况
}
}
int b;
int now = 1;
cout << n << " " << m << "\n";
for(int i = 1; i <= n; i++){
int j;
int tmp =1;
for(j = a[i]; j > 1; j /= prime[j]){
if(down[prime[j]] > 0){
down[prime[j]]--;//如果当前该数的质因数能在分母里也含油1,那么就将它约去,否则将它乘到答案里面
}
else{
tmp *= prime[j];
}
}
cout << tmp << " ";
}
puts("");
for(int i = 1; i <= m; i++){
int j;
int tmp = 1;
for(j = bb[i]; j > 1; j /= prime[j]){
if(up[prime[j]] > 0){
up[prime[j]]--;//同上
}
else{
tmp *= prime[j];
}
}
cout << tmp << " ";
}
return 0;
}

CF222C Reducing Fractions的更多相关文章

  1. CodeForce 222C Reducing Fractions

    To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractio ...

  2. CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)

    ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...

  3. codeforces 练习

    codeforces 627 D. Preorder Test 二分 + 树dp 做logn次树dp codeforces 578D.LCS Again 给出一个字符串str,长度n<=10^6 ...

  4. Codeforces Round #137 (Div. 2)

    A. Shooshuns and Sequence 显然\([k,n]\)之间所有数均要相同,为了求最少步数,即最多模拟\(n\)次操作即可. B. Cosmic Tables 映射\(x_i,y_i ...

  5. ACM思维题训练 Section A

    题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...

  6. Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)

    传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...

  7. Codeforces Round #232 (Div. 2) D. On Sum of Fractions

    D. On Sum of Fractions Let's assume that v(n) is the largest prime number, that does not exceed n; u ...

  8. 一天一经典Reducing the Dimensionality of Data with Neural Networks [Science2006]

    别看本文没有几页纸,本着把经典的文多读几遍的想法,把它彩印出来看,没想到效果很好,比在屏幕上看着舒服.若用蓝色的笔圈出重点,这篇文章中几乎要全蓝.字字珠玑. Reducing the Dimensio ...

  9. 模拟 --- hdu 12878 : Fun With Fractions

    Fun With Fractions Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit ...

随机推荐

  1. JDBC:加载数据库驱动、连接数据库(详细讲解)

    加载数据库驱动: 1)由于Java是一个纯面向对象语言,任何事物在其中都必须抽象成类或者类对象,数据库也不例外,JDBC同样也把数据库抽象成面向对象的结构: 2)JDBC将整个数据库驱动器在底层抽象成 ...

  2. 调试F9/F10/F11/F8

    这篇随笔记录来自于实现活动促销页弹幕过程学习: // 页面加载完初始化方法$(function () { GetCustList(); createBarrage(); }) // 某功能的初始化方法 ...

  3. C++进阶实例2--员工分组

    C++进阶实例2--员工分组 1 #include<iostream> 2 #include<map> 3 #include<vector> 4 #include& ...

  4. PTA 7-4 堆栈操作合法性 (20 分)

    假设以S和X分别表示入栈和出栈操作.如果根据一个仅由S和X构成的序列,对一个空堆栈进行操作,相应操作均可行(如没有出现删除时栈空)且最后状态也是栈空,则称该序列是合法的堆栈操作序列.请编写程序,输入S ...

  5. redis 2 主从和哨兵

    主从: 概念:将一台redis服务器数据复制到其他redis服务器,前者是master,后者是slave.数据复制是单向,从主节点复制到从节点.master以写为主,slave以读为主一个zhu主节点 ...

  6. MAC系统下破解WIFI密码(亲测可用,含wifi密码字典)

    出差第二天,住的小区因为疫情被封,宿舍又没有wifi,看着附近满满的WIFI信号列表,wifi万能钥匙却一个都连接不上,心中一万匹CNM...于是电脑连上手机热点,然后各种折腾,终于破解了一个隔壁的w ...

  7. flex布局的总结

    1.开启了flex布局的元素叫: flex container 2.里面的直接子元素叫:flex items(默认情况下,所有item都会在一行显示) 3.display属性由flex和inline- ...

  8. ML第5周学习小结

    本周收获 总结一下本周学习内容: 1.学习了<深入浅出Pandas>的第五章:Pandas高级操作的两个内容 数据迭代 函数应用 我的博客链接: pandas:数据迭代.函数应用 2.&l ...

  9. django框架2

    内容概要 django小白必会三板斧 静态文件及相关配置 登录功能 静态文件 request对象方法 pycharm链接MySQL django链接MySQL django orm操作 django ...

  10. 【FAQ】运动健康服务REST API接口使用过程中常见问题和解决方法总结

    华为运动健康服务(HUAWEI Health Kit)为三方生态应用提供了REST API接口,通过其接口可访问数据库,为用户提供运动健康类数据服务.在实际的集成过程中,开发者们可能会遇到各种问题,这 ...