CF815D
模拟赛遇到的题目。
看各位大佬的做法都不是很懂,于是自己一通乱搞搞出来了。
题意
做法
为了方便叙述,我们将每个给出的三元组表示成 \((a_i,b_i,c_i)\),所选的三元组表示成\((x,y,z)\)。
首先我们考虑如果 \(c_i\) 相等(设为 \(c\))怎么做:
直接做看起来很麻烦,于是我们考虑正难则反,由算可行解数量改为算不可行解数量,并维护对于每一个 \(y\) 可选的 \(x\) ,显然对于每一个\(y\),\(x\)的选择满足单调性。
然后我们分类讨论一下 \(z\) 和 \(c_i\) 的大小关系
当 \(z \le c\) 时,对于每一个三元组,当 \(y \in [1,b_i]\) 时, \(x>p\);当 $y \in (b_i,q] \(时,\)x>a_i$。
当 \(z>c\) 时,对于每一个三元组,只需满足当 \(y \in [1,b_i]\)时,\(x>a_i\) 即可。
拿个线段树维护一下就可以了。
然后我们将这种做法拓展一下,我们先把原序列按 \(c_i\) 从大到小排序,可以轻易发现此时当 \(z \in (c_i,c_{i+1}]\) 时,每一个 \(z\) 贡献都是一样的
对于每一个区间\((c_i,c_{i+1}]\),我们考虑上面的做法来算贡献,显然对于前 \(i\) 个三元组,满足 \(z>c\) 的条件,对于后面的三元组,满足 \(z \le c\) 的条件。
且显然 \(z \le c\) 的条件是比 \(z > c\) 完全严格的,所以每次修改的时候把 \(z > c\)的条件给当前枚举到的三元组加上去就好了。
然后关于这个线段树,我们需要维护区间最大值,区间求和,这个可以自行百度解决(相信做到这道题的大佬都会)。
#include <bits/stdc++.h>
#define int long long
#define INF 2147483647
#define N 1000005
#define mkp make_pair
#define pii pair<int,int>
#define pb push_back
using namespace std;
int n,A,B,C,ans=0;
struct Y{int a,b,c;}a[N];
int cmp(Y x,Y y){return x.c>y.c;}
struct Ji_seg{
struct Tr{
int mn,tag,t,se,sum;
}tr[N<<2];
int ls(int nw){return nw*2;}
int rs(int nw){return nw*2+1;}
void change(int nw,int l,int r,int k){//对nw节点的区间进行区间取max
if(k<=tr[nw].mn)return;
if(k<tr[nw].se){
tr[nw].sum+=(k-tr[nw].mn)*tr[nw].t;
tr[nw].mn=k;tr[nw].t=max(tr[nw].t,1ll);tr[nw].tag=max(tr[nw].tag,k);
return;
}
int mid=(l+r)/2;
change(ls(nw),l,mid,k);change(rs(nw),mid+1,r,k);push_up(nw);
}
void push_down(int nw,int l,int r){
if(tr[nw].tag){
int mid=(l+r)/2;
change(ls(nw),l,mid,tr[nw].tag);
change(rs(nw),mid+1,r,tr[nw].tag);
tr[nw].tag=0;
}
}
void push_up(int nw){
tr[nw].sum=tr[ls(nw)].sum+tr[rs(nw)].sum;
if(tr[ls(nw)].mn==tr[rs(nw)].mn){
tr[nw].mn=tr[ls(nw)].mn;
tr[nw].t=tr[ls(nw)].t+tr[rs(nw)].t;
tr[nw].se=min(tr[ls(nw)].se,tr[rs(nw)].se);
return;
}
if(tr[ls(nw)].mn<tr[rs(nw)].mn){tr[nw].mn=tr[ls(nw)].mn;tr[nw].t=tr[ls(nw)].t;tr[nw].se=min(tr[ls(nw)].se,tr[rs(nw)].mn);}
else {tr[nw].mn=tr[rs(nw)].mn;tr[nw].t=tr[rs(nw)].t;tr[nw].se=min(tr[rs(nw)].se,tr[ls(nw)].mn);}
}
void build(int nw,int l,int r){
if(l==r){
tr[nw].sum=0;tr[nw].mn=0;tr[nw].se=INF;tr[nw].t=1;tr[nw].tag=0;
return;
}
int mid=(l+r)/2;
build(ls(nw),l,mid);
build(rs(nw),mid+1,r);
push_up(nw);
}
void update(int nw,int l,int r,int x,int y,int k){
if(x>y)return;
if(x<=l&&r<=y){
change(nw,l,r,k);
return;
}
int mid=(l+r)/2;push_down(nw,l,r);
if(x<=mid)update(ls(nw),l,mid,x,y,k);
if(y>mid)update(rs(nw),mid+1,r,x,y,k);
push_up(nw);
}
}T;
signed main() {
scanf("%lld %lld %lld %lld",&n,&A,&B,&C);
for(int i=1;i<=n;i++)scanf("%lld %lld %lld",&a[i].a,&a[i].b,&a[i].c);
sort(a+1,a+n+1,cmp);a[0]=Y{0,0,C};a[n+1]=Y{0,0,0};
T.build(1,1,B);
for(int i=1;i<=n;i++)T.update(1,1,B,1,a[i].b,a[i].a);
for(int i=0;i<=n;i++){
T.update(1,1,B,1,a[i].b,A);T.update(1,1,B,a[i].b+1,B,a[i].a);
ans+=(a[i].c-a[i+1].c)*(A*B-T.tr[1].sum);
}
printf("%lld\n",ans);
return 0;
}
CF815D的更多相关文章
- CF815D Karen and Cards
CF815D Karen and Cards 固定一维c,然后(a,b)看成坐标,矩形区域求交 1.Segment tree Beats! 2.改成不合法的区域就是求并,c反向枚举,区域只增不减且完全 ...
- 【CF815D】Karen and Cards 单调栈+扫描线
[CF815D]Karen and Cards 题意:一张卡片有三个属性a,b,c,其上限分别为A,B,C,现在有n张卡片,定义一张卡片能打败另一张卡片当且仅当它的至少两项属性要严格大于另一张的对应属 ...
- CF815D Karen and Cards 官方题解翻译
看到这道题,网上没有中文版的官方题解,于是就自己翻译了一遍. 不是机器翻译,是一个字一个字纯手翻译的,如果有错误欢迎指正. 比如我们有一张卡片,三个参数分别是 a1 = 4, b1 = 2, c1 = ...
- [学习笔记]Segment Tree Beats!九老师线段树
对于这样一类问题: 区间取min,区间求和. N<=100000 要求O(nlogn)级别的算法 直观体会一下,区间取min,还要维护区间和 增加的长度很不好求.... 然鹅, 从前有一个来自杭 ...
随机推荐
- jsp获取单选按钮组件的值
jsp获取单选按钮组件的值 1.首先,写一个带有单选按钮组件的前台页 1 <%@ page language="java" contentType="text/ht ...
- Word修订内容批量标红
最近改文章,期刊要求提供所有修改内容都标红的修订稿,本着能不手改就不手改的原则,我尝试检索了一下自动修改的方法,最先找到的是简书上的一篇使用VB宏命令批量修改的文章 (Word-接受全部修订为标红字体 ...
- 【AGC】如何使用认证服务与云数据库处理用户信息
使用场景 华为 AGC认证服务可以为应用快速构建安全可靠的用户认证系统,可以实现多种方式关联认证登录.而如何处理这些多种登录方式的用户信息,例如在应用中发布一个活动,哪些用户参加了哪一个活动,这些信 ...
- 如何使用CSS伪类选择器
总览 CSS选择器允许你通过类型.属性.位于HTML文档中的位置来选择元素.本教程阐述了三个新选项:is().:where()和:has(). 选择器通常在样式表中使用.下面的示例会找到所有<p ...
- KingbaseES sys_prewarm 扩展
Oracle 在查询数据 可以通过cache hint 所访问的数据cache 到数据库buffer,对于KingbaseES,如何将数据加载到cache 了?sys_prewarm 扩展插件可以实现 ...
- day35-IO流02
JavaOI流02 4.常用的类 4.1文件字节流输入流-FileInputStream InputStream抽象类是所有类字节输入流的超类 InputStream常用的子类: FileInputS ...
- [DOM]获取元素:根据ID、标签名、HTML5新增的方法、特殊元素获取
目录 [DOM]获取元素:根据ID.标签名.HTML5新增的方法.特殊元素获取 1.根据 ID 获取[.getElementById( )] 2.根据标签名获取[.getElementsByTagNa ...
- 9. Ceph 基础篇 - Crush Maps
文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247485302&idx=1&sn=00a3a204 ...
- 配置logstash消费kafka多个topic,分别生成索引
filebeat配置多个topic #filebeat.prospectors: filebeat.inputs: - input_type: log encoding: GB2312 # field ...
- C++自学笔记 头文件 (header file)关于 #include 和.h
头文件 在C++中定义Definition一个类的时候 要用分别的.h和.cpp文件去定义这个类 .h和.cpp成对出现 类的声明declaration和函数原型放在头文件里(.h) 定义这些函数的结 ...