hadoop2.2.0 MapReduce求和并排序
javabean必须实现WritableComparable接口,并实现该接口的序列化,反序列话和比较方法
package com.my.hadoop.mapreduce.sort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class InfoBean implements WritableComparable<InfoBean> {
private String account;
private double income;
private double expences;
private double surplus;
public void set(String account, double income, double expences){
this.account = account;
this.income = income;
this.expences = expences;
this.surplus = income - expences;
}
@Override
public String toString() {
return income+"\t"+expences+"\t"+surplus;
}
@Override
public void readFields(DataInput in) throws IOException {
this.account = in.readUTF();
this.income = in.readDouble();
this.expences = in.readDouble();
this.surplus = in.readDouble();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(this.account);
out.writeDouble(this.income);
out.writeDouble(this.expences);
out.writeDouble(this.surplus);
}
@Override
public int compareTo(InfoBean o) {
if (this.income == o.getIncome()) {
return this.expences > o.getExpences() ? 1 : -1;
} else {
return this.income > o.getIncome() ? -1 : 1;
}
}
public String getAccount() {
return account;
}
public void setAccount(String account) {
this.account = account;
}
public double getIncome() {
return income;
}
public void setIncome(double income) {
this.income = income;
}
public double getExpences() {
return expences;
}
public void setExpences(double expences) {
this.expences = expences;
}
public double getSurplus() {
return surplus;
}
public void setSurplus(double surplus) {
this.surplus = surplus;
}
}
先求和
package com.my.hadoop.mapreduce.sort;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SumStep {
public static class SumMap extends Mapper<LongWritable, Text, Text, InfoBean>{
private Text k = new Text();
private InfoBean v = new InfoBean();
@Override
public void map(LongWritable key, Text value, Context context) throws java.io.IOException ,InterruptedException {
String[] fields = value.toString().split("\t");
String account = fields[0];
double in = Double.parseDouble(fields[1]);
double out = Double.parseDouble(fields[2]);
k.set(account);
v.set(account, in, out);
context.write(k, v);
}
}
public static class SumReduce extends Reducer<Text, InfoBean, Text, InfoBean>{
private InfoBean v = new InfoBean();
@Override
public void reduce(Text key, Iterable<InfoBean> value, Context context) throws java.io.IOException ,InterruptedException {
double in_sum = 0;
double out_sum = 0;
for (InfoBean bean : value) {
in_sum += bean.getIncome();
out_sum += bean.getExpences();
}
v.set("", in_sum, out_sum);
context.write(key, v);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, SumStep.class.getSimpleName());
job.setJarByClass(SumStep.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
job.setMapperClass(SumMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(InfoBean.class);
job.setReducerClass(SumReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InfoBean.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 :1);
}
}
后排序
package com.my.hadoop.mapreduce.sort;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SortStep {
public static class SortMap extends Mapper<LongWritable, Text, InfoBean, NullWritable>{
private InfoBean k = new InfoBean();
@Override
public void map(LongWritable key, Text value, Context context) throws java.io.IOException ,InterruptedException {
System.out.println("===="+value.toString()+"====");
String[] fields = value.toString().split("\t");
String account = fields[0];
double in = Double.parseDouble(fields[1]);
double out = Double.parseDouble(fields[2]);
k.set(account, in, out);
context.write(k, NullWritable.get());
}
}
public static class SortReduce extends Reducer<InfoBean, NullWritable, Text, InfoBean>{
private Text k = new Text();
@Override
public void reduce(InfoBean bean, Iterable<NullWritable> value, Context context) throws java.io.IOException ,InterruptedException {
k.set(bean.getAccount());
context.write(k, bean);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, SortStep.class.getSimpleName());
job.setJarByClass(SortStep.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
job.setMapperClass(SortMap.class);
job.setMapOutputKeyClass(InfoBean.class);
job.setMapOutputValueClass(NullWritable.class);
job.setReducerClass(SortReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InfoBean.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 :1);
}
}
hadoop2.2.0 MapReduce求和并排序的更多相关文章
- hadoop2.2.0 MapReduce分区
package com.my.hadoop.mapreduce.partition; import java.util.HashMap;import java.util.Map; import org ...
- hadoop2.2.0 MapReduce的序列化
package com.my.hadoop.mapreduce.dataformat; import java.io.DataInput;import java.io.DataOutput;impor ...
- 【hadoop2.6.0】用C++ 编写mapreduce
hadoop通过hadoop streaming 来实现用非Java语言写的mapreduce代码. 对于一个一点Java都不会的我来说,这真是个天大的好消息. 官网上hadoop streaming ...
- 一脸懵逼学习Hadoop中的序列化机制——流量求和统计MapReduce的程序开发案例——流量求和统计排序
一:序列化概念 序列化(Serialization)是指把结构化对象转化为字节流.反序列化(Deserialization)是序列化的逆过程.即把字节流转回结构化对象.Java序列化(java.io. ...
- 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置
简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...
- 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行
今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...
- Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量
1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...
- 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...
- Eclipse中部署hadoop2.3.0
1 eclipse中hadoop环境部署概览 eclipse 中部署hadoop包括两大部分:hdfs环境部署和mapreduce任务执行环境部署.一般hdfs环境部署比较简单,部署后就 可以在ecl ...
随机推荐
- Android 面试精华题目总结
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/24015867 下面的题目都是楼主在android交流群大家面试时遇到的,如果大家 ...
- el和jstl
<%@page import="cn.bdqn.bean.News"%> <%@ page language="java" import=&q ...
- mysql的limit性能,数据库索引问题,dblog问题
mysql的limit性能,数据库索引问题,dblog问题,redis学习 继续学习. dblog实际上是把日志记录在另一个数据库里面. 问题1: 一张表定义了5个索引,但是sql语句中用到了3个有索 ...
- (转)js arguments对象
在javascript中,不需要明确指出参数名,就能访问它们.如: function hi(){if(arguments[0]=="andy"){ return;}aler ...
- 分享内容到微博、QQ空间、人人网、开心网等社区
网上有不少分享内容到微博.QQ空间.人人网.开心网等社区的插件,但它们都有自己固定的样式,你不一定会喜欢. 或许你想保持你的网站的原状,添加上微博.QQ空间.人人网.开心网的LOGO图片,点击之后就可 ...
- Struts2 手动验证
* 首先要从页面中获取对应的标签name属性的值,在动作类action中声明同名的属性,提供get和set方法 * 要继承ActionSupport类或者实现Validateable接口 ...
- JAVA-2-GetDay
import java.util.*; public class Ch0310 { public static void main(String[] args) { // TODO 自动生成的方法存根 ...
- thrift之TTransport类体系原理及源码详细解析1-类结构和抽象基类
本章主要介绍Thrift的传输层功能的实现,传输的方式多种多样,可以采用压缩.分帧等,而这些功能的实现都是相互独立,和上一章介绍的协议类实现方式比较雷同,还是先看看这部分的类关系图,如下: 由上面的类 ...
- webservice: Could not initialize Service NoSuchMethodException getPortClassMap()
今天用apache-cxf-3.1.1的wsdl2java生成webservice文件,调用的时候出了问题 报错:Could not initialize Service NoSuchMethodEx ...
- Android 访问权限设置
Android开发应用程序时,有时我们要用到很多权限, 今天我就收集了一些开发时可能用到的开启权限设置. 这些权限都是在 AndroidManifest.xml设置. 设置方法 <uses-pe ...