我们在搞性能测试的时候,对后台服务器的CPU利用率监控是一个常用的手段。服务器的CPU利用率高,则表明服务器很繁忙。如果前台响应时间越来越大,而后台CPU利用率始终上不去,说明在某个地方有瓶颈了,系统需要调优。这个是即使不懂技术的人都容易理解的事情。

上面理解对吗?我个人觉得不十分准确。这个要看后台你测试的进程是什么类型的。如果是计算密集型的进程,当前端压力越来越大的时候,很容易把CPU利用率打上去。但是如果是I/O网络密集型的进程,即使客户端的请求越来越多,但是服务器CPU不一定能上去,这个是你要测试的进程的自然属性决定的。比较常见的就是,大文件频繁读写的cpu开销远小于小文件频繁读写的开销。因为在I/O吞吐量一定时,小文件的读写更加频繁,需要更多的cpu来处理I/O的中断。

在Linux/Unix下,CPU利用率分为用户态,系统态和空闲态,分别表示CPU处于用户态执行的时间,系统内核执行的时间,和空闲系统进程执行的时间。平时所说的CPU利用率是指:CPU执行非系统空闲进程的时间 / CPU总的执行时间。

在Linux的内核中,有一个全局变量:Jiffies。 Jiffies代表时间。它的单位随硬件平台的不同而不同。系统里定义了一个常数HZ,代表每秒种最小时间间隔的数目。这样jiffies的单位就是1/HZ。Intel平台jiffies的单位是1/100秒,这就是系统所能分辨的最小时间间隔了。每个CPU时间片,Jiffies都要加1。 CPU的利用率就是用执行用户态+系统态的Jiffies除以总的Jifffies来表示。

cpu的利用率

在Linux系统中,可以用/proc/stat文件来计算cpu的利用率(详细的解释可参考:http://www.linuxhowtos.org/System/procstat.htm)。这个文件包含了所有CPU活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。

# cat /proc/stat
0 1 2 3 4 5 6 7
cpu 432661 13295 86656 422145968 171474 233 5346
cpu0 123075 2462 23494 105543694 16586 0 4615
cpu1 111917 4124 23858 105503820 69697 123 371
cpu2 103164 3554 21530 105521167 64032 106 334
cpu3 94504 3153 17772 105577285 21158 4 24
intr 1065711094 1057275779 92 0 6 6 0 4 0 3527 0 0 0 70 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7376958 0 0 0 0 0 0 0 1054602 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ctxt 19067887
btime 1139187531
processes 270014
procs_running 1
procs_blocked 0

输出解释

1 从系统启动开始累计到当前时刻,用户态的CPU时间(单位:jiffies) ,不包含 nice值为负进程。1jiffies=0.01秒
2 从系统启动开始累计到当前时刻,nice值为负的进程所占用的CPU时间(单位:jiffies)
3 从系统启动开始累计到当前时刻,核心时间(单位:jiffies)
4 从系统启动开始累计到当前时刻,除硬盘IO等待时间以外其它等待时间(单位:jiffies)
5 从系统启动开始累计到当前时刻,硬盘IO等待时间(单位:jiffies) ,
6 从系统启动开始累计到当前时刻,硬中断时间(单位:jiffies)
7 从系统启动开始累计到当前时刻,软中断时间(单位:jiffies) CPU时间=user+system+nice+idle+iowait+irq+softirq “intr”这行给出中断的信息,第一个为自系统启动以来,发生的所有的中断的次数;然后每个数对应一个特定的中断自系统启动以来所发生的次数。 “ctxt”给出了自系统启动以来CPU发生的上下文交换的次数。 “btime”给出了从系统启动到现在为止的时间,单位为秒。 “processes (total_forks) 自系统启动以来所创建的任务的个数目。 “procs_running”:当前运行队列的任务的数目。 “procs_blocked”:当前被阻塞的任务的数目。

CPU利用率计算

那么CPU利用率可以使用以下两个方法。先取两个采样点,然后计算其差值:

    cpu usage=(idle2-idle1)/(cpu2-cpu1)*100
cpu usage=[(user_2 +sys_2+nice_2) - (user_1 + sys_1+nice_1)]/(total_2 - total_1)*100
公式
    total_0USER[0]+NICE[0]+SYSTEM[0]+IDLE[0]+IOWAIT[0]+IRQ[0]+SOFTIRQ[0]
total_1=USER[1]+NICE[1]+SYSTEM[1]+IDLE[1]+IOWAIT[1]+IRQ[1]+SOFTIRQ[1]
cpu usage=(IDLE[0]-IDLE[1]) / (total_0-total_1) * 100

总CPU使用率

#!/bin/sh
##echo user nice system idle iowait irq softirq
CPULOG_1=$(cat /proc/stat | grep 'cpu ' | awk '{print $2" "$3" "$4" "$5" "$6" "$7" "$8}')
SYS_IDLE_1=$(echo $CPULOG_1 | awk '{print $4}')
Total_1=$(echo $CPULOG_1 | awk '{print $1+$2+$3+$4+$5+$6+$7}') sleep 1 CPULOG_2=$(cat /proc/stat | grep 'cpu ' | awk '{print $2" "$3" "$4" "$5" "$6" "$7" "$8}')
SYS_IDLE_2=$(echo $CPULOG_2 | awk '{print $4}')
Total_2=$(echo $CPULOG_2 | awk '{print $1+$2+$3+$4+$5+$6+$7}') SYS_IDLE=`expr $SYS_IDLE_2 - $SYS_IDLE_1` Total=`expr $Total_2 - $Total_1`
SYS_USAGE=`expr $SYS_IDLE/$Total*100 |bc -l` SYS_Rate=`expr 100-$SYS_USAGE |bc -l` Disp_SYS_Rate=`expr "scale=3; $SYS_Rate/1" |bc`
echo $Disp_SYS_Rate%

获得全部CPU相关的user sys wait hirq sirq util

#cat  cpu.sh
COLLECT_DIR=$(cd $(dirname $0}); pwd);
BASE_DIR=$(cd $COLLECT_DIR;cd ..;pwd);
source $BASE_DIR/libs/function.sh CALCULATE_CPU(){
#echo user nice system idle iowait irq softirq
CPULOG_1=$(cat $READ_FILE | grep 'cpu ' | awk '{print $2" "$3" "$4" "$5" "$6" "$7" "$8}')
total_1=$(echo $CPULOG_1 | awk '{print $1+$2+$3+$4+$5+$6+$7}')
old_processes=$(cat /proc/stat |grep -w "processes" | awk '{print $2}')
read user_1 nice_1 sys_1 idle_1 iowait_1 hard_1 soft_1 <<< `echo "$CPULOG_1" |awk '{print $1,$2,$3,$4,$5,$6,$7}'` sleep 1 CPULOG_2=$(cat /proc/stat | grep 'cpu ' | awk '{print $2" "$3" "$4" "$5" "$6" "$7" "$8}')
total_2=$(echo $CPULOG_2 | awk '{print $1+$2+$3+$4+$5+$6+$7}')
new_processes=$(cat /proc/stat |grep -w "processes" | awk '{print $2}')
read user_2 nice_2 sys_2 idle_2 iowait_2 hard_2 soft_2 <<< `echo "$CPULOG_2" |awk '{print $1,$2,$3,$4,$5,$6,$7}'` #OFFSET
total_offset=`BC_SUBTRACTION $total_2 $total_1`
user_offset=`BC_SUBTRACTION $user_2 $user_1`
sys_offset=`BC_SUBTRACTION $sys_2 $sys_1`
idle_offset=`BC_SUBTRACTION $idle_2 $idle_1`
iowait_offset=`BC_SUBTRACTION $iowait_2 $iowait_1`
hard_offset=`BC_SUBTRACTION $hard_2 $hard_1`
soft_offset=`BC_SUBTRACTION $soft_2 $soft_1` #RESULT
idle_util=`BC_DIVISION_100 $idle_offset $total_offset`
util=`BC_SUBTRACTION 100 $idle_util`
sys=`BC_DIVISION_100 $sys_offset $total_offset`
user=`BC_DIVISION_100 $user_offset $total_offset`
iowait=`BC_DIVISION_100 $iowait_offset $total_offset`
hirq=`BC_DIVISION_100 $hard_offset $total_offset`
sirq=`BC_DIVISION_100 $soft_offset $total_offset`
processes=`BC_SUBTRACTION $new_processes $old_processes` #MESG
MESG "cpu使用" "sys" $sys "%"
MESG "cpu使用" "user" $user "%"
MESG "cpu使用" "iowait" $iowait "%"
MESG "cpu使用" "hirq" $hirq "%"
MESG "cpu使用" "sirq" $sirq "%"
MESG "cpu使用" "util" $util "%"
} LOOP_CPU(){
while [[ 1 == 1 ]];do
sleep $INTERVAL
CALCULATE_CPU
done
} MAIN(){
READ_FILE="/proc/stat"
#注意,每个子脚本,这里是不同的!
PID_KEY_NAME="CPU_PID"
TIMEOUT LOOP_CPU
}
MAIN

单CPU使用率

CPU负载

获取方法:

#cat /proc/loadavg
0.00 0.03 0.05 1/690 1014

sysinfo获得cpu load数据

但是注意,这个方法,不适用于容器

[root@jiangyi01.sqa.zmf /home/ahao.mah/gotby/tool]
#cat sysinfo.c
#include <stdio.h>
#include <sys/sysinfo.h>
int main(int argc, char *agrv[]) {
struct sysinfo s_info;
int error;
error = sysinfo(&s_info);
printf("load1: %f\nload5: %f\nload10: %f\n",
(double)s_info.loads[0]/65536.0,
(double)s_info.loads[1]/65536.0,
(double)s_info.loads[2]/65536.0);
printf("available: %lu\n", s_info.freeram/1024);
printf("total: %lu\n", s_info.totalram/1024);
printf("mem_unit: %u \n", s_info.mem_unit)/1024;
return 0;
}
[root@jiangyi01.sqa.zmf /home/ahao.mah/gotby/tool]
#./sysinfo
load1: 0.002930
load5: 0.030762
load10: 0.045410
available: 86632160
total: 98795000
mem_unit: 1

随机推荐

  1. Java实现上传下载

    一.上传 二.下载 import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.Fi ...

  2. PHP异常与错误处理机制

    先区别一下php中错误 与 异常的概念吧 PHP错误:是属于php程序自身的问题,一般是由非法的语法,环境问题导致的,使得编译器无法通过检查,甚至无法运行的情况.平时遇到的warming.notice ...

  3. Hopscotch(细节)

     Hopscotch Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit  ...

  4. UVA1351-----String Compression-----区间DP(记忆化搜索实现)

    本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...

  5. bzoj2257 [Jsoi2009]瓶子和燃料 最大公约数

    [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1449  Solved: 889[Submit][Status][Di ...

  6. python第六天(元组、字典、集合)

    一.元组(tuple) 作用:存多个值,对比列表来说,元组不可变(是可以当做字典的key的),主要用来读 定义:与列表类型相比,只不过把[ ]换成() age=(11,22,33,44,55)prin ...

  7. 驰骋工作流引擎JFlow与activiti的对比之2种结构化模式

    1. 任意循环(Arbitrary Cycles) ACTIVITI : 某一个或多个活动可以反复执行. 例子:用户买了瓶汽水,拿到汽水后,中了一瓶,又去兑换了一瓶汽水,如果又中了,再去兑换一瓶汽水- ...

  8. 字节输入流 FileInputStream

    字节输入流 InputStream : 方法介绍: read(); 读取下一个字节 返回-1读取文件结束 close(); 复制文件 将数据aaa.txt复制到d盘 字节输入流读---->字节输 ...

  9. org.apache.jasper.JasperException: Unable to convert string

    最佳实践 不要使用idea生成的模板,头文件宁愿不要省事,除非知道有什么副作用. <!--<!DOCTYPE web-app PUBLIC--> <!--"-//Su ...

  10. .net C# 利用Session防重复点击防重复提交

    <body>    <form id="form1" runat="server">    <div>        < ...