int BTreeMaximum( BNode *x )
{
if ( x->leaf )
{
return x->key[x->size - 1];
}
else
{
return BTreeMaximum( x->child[x->size] );
}
} int BTreeMinimum( BNode *x )
{
if ( x->leaf )
{
return x->key[0];
}
else
{
return BTreeMinimum( x->child[0] );
}
} void BTreeDelete( BNode *&x, int k )
{
int i = 0;
while ( i < x->size && k > x->key[i] )
{
i++;
}
// case 1
if ( i < x->size && k == x->key[i] && x->leaf )
{
for ( int j = i; j < x->size - 1; ++j )
{
x->key[j] = x->key[j + 1];
}
x->size--;
}
// case 2
else if ( i < x->size && k == x->key[i] && !x->leaf )
{
BNode *y = x->child[i];
BNode *z = x->child[i + 1];
// 2a
if ( y->size >= t )
{
int k_ = BTreeMaximum( y );
x->key[i] = k_;
BTreeDelete( y, k_ );
}
// 2b
else if ( z->size >= t )
{
int k_ = BTreeMinimum( z );
x->key[i] = k_;
BTreeDelete( z, k_ );
}
// 2c
else
{
// update the node y
y->key[t - 1] = k;
for ( int j = t; j < 2 * t - 1; ++j )
{
y->key[j] = z->key[j - t];
y->child[j] = z->child[j - t];
}
y->child[2 * t - 1] = z->child[t - 1];
y->size = y->size + z->size + 1; // update the node x
for ( int j = i; j < x->size - 1; ++j )
{
x->key[j] = x->key[j + 1];
x->child[j + 1] = x->child[j + 2];
}
x->size--; // delete z
delete z;
BTreeDelete( y, k );
} // end else 2c
} // end if case 2
// case 3
else if ( i <= x->size )
{
if ( x->child[i]->size == t - 1 )
{
if ( i > 0 && x->child[i - 1]->size >= t )
{
// update x->child[i]
for ( int j = t - 2; j >= 0; --j )
{
x->child[i]->key[j + 1] = x->child[i]->key[j];
if ( !x->child[i]->leaf )
{
x->child[i]->child[j + 2] = x->child[i]->child[j + 1];
}
}
x->child[i]->child[1] = x->child[i]->child[0];
x->child[i]->key[0] = x->key[i - 1];
x->child[i]->child[0] = x->child[i - 1]->child[x->child[i - 1]->size];
x->child[i]->size++;
// update x
x->key[i - 1] = x->child[i - 1]->key[x->child[i - 1]->size - 1];
// update x->child[i - 1]
x->child[i - 1]->size--;
BTreeDelete( x->child[i], k );
}
else if ( i < x->size && x->child[i + 1]->size >= t )
{
// update x->child[i]
x->child[i]->key[t - 1] = x->key[i];
x->child[i]->child[t] = x->child[i - 1]->child[0];
x->child[i]->size++;
//update x
x->key[i] = x->child[i - 1]->key[0];
//update x->child[i - 1]
for ( int j = 0; j < x->child[i - 1]->size - 1; ++j )
{
x->child[i - 1]->key[j] = x->child[i - 1]->key[j + 1];
x->child[i - 1]->child[j] = x->child[i - 1]->child[j + 1];
}
x->child[i - 1]->child[x->child[i - 1]->size - 1] = x->child[i - 1]->child[x->child[i - 1]->size];
x->child[i - 1]->size--;
BTreeDelete( x->child[i], k );
}
// case 3b
// merge with the left node x->child[i - 1]
else if ( i > 0 )
{
// update x->child[i - 1]
x->child[i - 1]->key[t - 1] = x->key[i - 1];
for ( int j = t; j < 2 * t - 1; ++j )
{
x->child[i - 1]->key[j] = x->child[i]->key[j - t];
x->child[i - 1]->child[j] = x->child[i]->child[j - t];
}
x->child[i - 1]->child[2 * t - 1] = x->child[i]->child[t - 1];
x->child[i - 1]->size = 2 * t - 1;
// delete x->child[i]
delete x->child[i];
// update x
for ( int j = i; j < x->size; ++j )
{
x->key[i - 1] = x->key[i];
x->child[i] = x->child[i + 1];
}
x->size--;
if ( x->size == 0 )
{
x = x->child[0];
BTreeDelete( x, k );
}
else
{
BTreeDelete( x->child[i - 1], k );
}
}
// merge with the right node x->child[i + 1]
else if ( i < x->size )
{
// update x->child[i]
x->child[i]->key[t - 1] = x->key[i];
for ( int j = t; j < 2 * t - 1; ++j )
{
x->child[i]->key[j] = x->child[i + 1]->key[j - t];
x->child[i]->child[j] = x->child[i + 1]->child[j - t];
}
x->child[i]->child[2 * t - 1] = x->child[i + 1]->child[t - 1];
x->child[i]->size = 2 * t - 1;
// delete x->child[i + 1]
delete x->child[i + 1];
// update x
for ( int j = i; j < x->size - 1; ++j )
{
x->key[j] = x->key[j + 1];
x->child[j + 1] = x->child[j + 2];
}
x->size--;
if ( x->size == 0 )
{
x = x->child[0];
BTreeDelete( x, k );
}
else
{
BTreeDelete( x->child[i - 1], k );
}
}
} // end if case 3
else
{
BTreeDelete( x->child[i], k );
}
//
} }

B树的实现与源代码二(删除源代码)的更多相关文章

  1. Android源代码因删除所有git仓库导致的编译错误

    /******************************************************************************** * Android源代码因删除所有g ...

  2. 数据结构系列之2-3树的插入、查找、删除和遍历完整版代码实现(dart语言实现)

    弄懂了二叉树以后,再来看2-3树.网上.书上看了一堆文章和讲解,大部分是概念,很少有代码实现,尤其是删除操作的代码实现.当然,因为2-3树的特性,插入和删除都是比较复杂的,因此经过思考,独创了删除时分 ...

  3. OpenLayers 项目完整分析——(二)源代码总体结构分析

    转自:http://www.cnblogs.com/lzlynn/archive/2008/07/29/1255848.html 二)源代码总体结构分析 通过前面的项目介绍,我们大概已经知道Openl ...

  4. Memcached源代码分析 - Memcached源代码分析之消息回应(3)

    文章列表: <Memcached源代码分析 - Memcached源代码分析之基于Libevent的网络模型(1)> <Memcached源代码分析 - Memcached源代码分析 ...

  5. 数据结构系列之2-3-4树的插入、查找、删除和遍历完整版源代码实现与分析(dart语言实现)

    本文属于原创,转载请注明来源. 在上一篇博文中,详细介绍了2-3树的操作(具体地址:https://www.cnblogs.com/outerspace/p/10861488.html),那么对于更多 ...

  6. B树的查找、插入、删除(附源代码)

    B-Tree Index B-Tree搜索 B-Tree插入 分裂节点 插入节点 B-Tree删除 合并节点 删除节点 Basic B-Tree有两个比较重要的性质: 所有的leaf均在同一个leve ...

  7. 项目管理实践教程二、源代码控制【Source Control Using VisualSVN Server and TortoiseSVN】

    在第一篇文章 项目管理实践教程一.工欲善其事,必先利其器[Basic Tools]发布后,根据大家的回复,我需要向大家说明几个问题: 1.为什么要用VisualSVN Server,而不用Subver ...

  8. AVL树(查找、插入、删除)——C语言

    AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...

  9. AVL树C++实现(插入,删除,查找,清空,遍历操作)

    AVL.h文件代码 #pragma once #include<iostream> #include<stack> #include <assert.h> usin ...

随机推荐

  1. Windows Phone 8本地化多语言支持

    原文 Windows Phone 8本地化多语言支持 在WP8平台处理本地化多语言的支持还是比较容易的,大部分工作都有VS IDE处理,开发者只需简单操作,并翻译本地资源即可实现. 无论您目前的应用是 ...

  2. 配置php网页显示错误

    发现问题比解决问题重要,使用php集成开发环境Appserv网页会提示各种语法错误,但自己配置开发环境无法提示错误,特别当不是语法错误,比如com组件的调用,当不知道问题出现在何处,是不能忍受的,这时 ...

  3. 复习知识点:TabBarViewController(微信框架)

    TabBarViewController:标签视图控制器 在application设置 创建四个视图控制器 引入视图控制器头文件 #import "AppDelegate.h" # ...

  4. Codeforces Round #250 (Div. 2)—A. The Child and Homework

         好题啊,被HACK了.曾经做题都是人数越来越多.这次比赛 PASS人数 从2000直掉 1000人  被HACK  1000多人! ! ! ! 没见过的科技啊 1 2 4 8 这组数 被黑的 ...

  5. BZOJ-1007-水平可见直线-HN2008

    描写叙述 在xoy直角坐标平面上有n条直线L1,L2,-Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 比如,对于直线: L1:y=x; L2:y=- ...

  6. uVa 714 (二分法)

    Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Description   Before th ...

  7. java 对象赋值问题

    import java.io.*; class CCircle{ private static double pi = 3.1415; private double radius; public CC ...

  8. Android使用HttpClient向服务器传输文件

    HttpClient是Apache Jakarta Common下的子项目,可以用来提供功能丰富的支持HTTP协议的客户端编程工具包,这几天写客户端的时候遇到个问题,“客户端需要向服务器发送Post请 ...

  9. Visual Studio 2015编译安装配置QT5.5.1(含QTWEBKIT)

    尽管QT5.5.1和VisualStudio 2015都已经发布很久了,但是QT项目组视乎不会为QT5.5.1专门发布预编译的QT5.5.1 for windows(2015)版本的,也不会专门发布V ...

  10. Sitemesh3的使用及配置

    1 . Sitemesh 3 简介 Sitemesh 是一个网页布局和修饰的框架,基于 Servlet 中的 Filter,类似于 ASP.NET 中的‘母版页’技术.参考:百度百科,相关类似技术:A ...