转(havel 算法)
http://www.cnblogs.com/wally/p/3281361.html
poj 1659(havel算法)
题目链接:http://poj.org/problem?id=1659
思路: havel算法的应用:
(1)对序列从大到小进行排序。
(2)设最大的度数为 t ,把最大的度数置0,然后把最大度数后(不包括自己)的 t 个度数分别减1(意思就是把度数最大的点与后几个点进行连接)
(3)如果序列中出现了负数,证明无法构成。如果序列全部变为0,证明能构成,跳出循环。前两点不出现,就跳回第一步!
简单例子:
4 4 3 3 2 2
第二步后0 3 2 2 1 2
排完续后3 2 2 2 1 0
第二步后0 1 1 1 1 0
排完续后1 1 1 1 0 0
第二步后0 0 1 1 0 0
排完续后1 1 0 0 0 0
第二步后0 0 0 0 0 0
全为0,能构成图,跳出!

1 #include<iostream>
2 #include<cstdio>
3 #include<cstring>
4 #include<algorithm>
5 using namespace std;
6 #define MAXN 14
7
8 struct Node{
9 int num,id;
10 }pp[MAXN];
11
12 int n;
13 int map[MAXN][MAXN];
14
15 int cmp(const Node &p,const Node &q)
16 {
17 return p.num>q.num;
18 }
19
20 int main()
21 {
22 int _case;
23 scanf("%d",&_case);
24 while(_case--){
25 scanf("%d",&n);
26 for(int i=1;i<=n;i++){
27 scanf("%d",&pp[i].num);
28 pp[i].id=i;
29 }
30 memset(map,0,sizeof(map));
31 bool flag=true;
32 while(true){
33 sort(pp+1,pp+n+1,cmp);
34 if(pp[1].num==0)break;
35 for(int i=1;i<=pp[1].num;i++){
36 pp[1+i].num--;
37 if(pp[1+i].num<0)flag=false;
38 map[pp[1].id][pp[1+i].id]=map[pp[1+i].id][pp[1].id]=1;
39 }
40 pp[1].num=0;
41 if(!flag)break;
42 }
43 if(flag){
44 puts("YES");
45 for(int i=1;i<=n;i++){
46 printf("%d",map[i][1]);
47 for(int j=2;j<=n;j++){
48 printf(" %d",map[i][j]);
49 }
50 printf("\n");
51 }
52 }else
53 puts("NO");
54 if(_case)puts("");
55 }
56 return 0;
57 }
转(havel 算法)的更多相关文章
- poj 1659(havel算法)
题目链接:http://poj.org/problem?id=1659 思路: havel算法的应用: (1)对序列从大到小进行排序. (2)设最大的度数为 t ,把最大的度数置0,然后把最大度数后 ...
- poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 6076 Accepted: 26 ...
- LD1-M(简单图的判定+构造,Havel定理)
题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn}, ...
- cdoj913-握手 【Havel定理】
http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others) Memory Limit ...
- POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...
- 图论常用算法之一 POJ图论题集【转载】
POJ图论分类[转] 一个很不错的图论分类,非常感谢原版的作者!!!在这里分享给大家,爱好图论的ACMer不寂寞了... (很抱歉没有找到此题集整理的原创作者,感谢知情的朋友给个原创链接) POJ:h ...
- B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...
- 分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
随机推荐
- <转载>构造函数与拷贝构造函数
原文地址http://www.cnblogs.com/waynelu/archive/2012/07/01/2572264.html 构造函数 构造函数.析构函数与赋值函数是每个类最基本的函数. 对于 ...
- 最小费用最大流模板 poj 2159 模板水题
Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15944 Accepted: 8167 Descr ...
- runtime的基本应用
1.什么是runtime? runtime是一套底层的C语言API,包含很多强大实用的C语言数据类型和C语言函数,平时我们编写的OC代码,底层都是基于runtime实现的. 2.runtime有什么作 ...
- Cocoa Pods的安装
CocoaPods是用Ruby实现的,要想使用它首先需要有Ruby的环境.幸运的是OS X系统默认已经可以运行Ruby了,因此我们只需执行以下命令: sudo gem install -n /usr/ ...
- SpringMVC(三)——其他知识
这篇博客,看一下在Controller类中,进行结果的跳转方式,对于SpringMVC框架中异常,如何统一捕捉,还有就是S(SpringMVC)SH的整合. 一,框架默认情况下是通过转发进行跳转的,如 ...
- jQuery 事件 - error() 方法
实例 如果图像不存在,则用一段预定义的文本取代它: $("img").error(function(){ $("img").replaceWith(" ...
- 疯狂安卓Android自学笔记
开发者必备自学工具: 谷歌搜索:www.yundou.info Android原版开发文档 (英文) Doc http://www.phoned.cn/docs/reference/android/v ...
- mssql 判断sql语句的执行效率语句
SET STATISTICS io ONSET STATISTICS time ONgo--========此处为sql代码段=============== select zxbh from t_yr ...
- Kernel Regression from Nando's Deep Learning lecture 5
require 'torch' require 'gnuplot' , , nData) ) print(xTrain) print(yTrain) local yTrain = yTrain + t ...
- UVA11806Cheerleaders(容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题目意思:在m行n列的矩形网格中放k个相同的石子,问有多少中方法?每个格子最多放一 ...