K-Modes算法[聚类算法]
聚类算法k-Modes的实现
<?php
/*
*Kmodes算法(聚类算法的实现)
*/ /*
*获取簇的数目
*/
//--------------------------------------------------------------------
function Category($train)
{
$category = array(NULL);//存放不同的类别
array_splice($category,0,1); for($i=1;$i<count($train);$i++)
{
$flags = true;//标志,用于标记将要存入的类别是否已经存在
for($j=0;$j<count($category);$j++)
{
if($category[$j]==$train[$i][count($train[$i])-1])
{
$flags = false;
break;
}
}
if($flags)
{
array_push($category,$train[$i][count($train[$i])-1]);
}
}
return $category;
}
//-------------------------------------------------------------------- /*
*获得初始矩阵M
*/
//--------------------------------------------------------------------
function first_M($train)
{
$category = Category($train);
$M = array(NULL);
array_splice($M,0,1);
$num = 1;
for($j=0;$j<count($category);$j++)
{
while($num<count($train))
{
if($train[$num][count($train[$num])-1]==$category[$j])
{
$temp = $train[$num];
//print_r($temp);
array_splice($temp,0,1);
array_splice($temp,count($temp)-1,1);
array_push($M,$temp);
$num++;
break;
}else{
$num++;
}
}
}
/* echo "<pre>";
print_r($M);
*/
return $M;
}
//-------------------------------------------------------------------- /*
*获得距离dis(ml,ei)
*/
//--------------------------------------------------------------------
function dis($array,$e)
{
$temp = $array;
$sum = 0;
for($i=1;$i<count($array)-1;$i++)
{
if($array[$i]!=$e[$i-1])
{
$sum++;
}
}
return $sum;
}
//-------------------------------------------------------------------- /*
*获得新的矩阵W
*/
//--------------------------------------------------------------------
function W($train,$M)
{
$W = array(NULL); for($i=1;$i<count($train);$i++)
{
$flags = true;
$min = dis($train[$i],$M[0]);
for($j=2;$j<=count($M);$j++)
{
if(dis($train[$i],$M[$j-1])<$min)
{
$min = dis($train[$j],$M[$j-1]);
}
} for($j=1;$j<=count($M);$j++)
{
if(dis($train[$i],$M[$j-1])==$min)
{
$num = $j;
break;
}
}
for($j=1;$j<=count($M);$j++)
{ if($j!=$num)
{
$W[$j][$i] = 0;
}else{
$W[$j][$i] = 1;
} }
}
/*
for($i=1;$i<=count($M);$i++)
{
$flags = true;
for($j=2;$j<count($train);$j++)
{
$flags = true;
$min = dis($train[$j],$M[$i-1]);
for($k=1;$k<=count($M);$k++)
{
if((dis($train[$j],$M[$k-1])<=$min)&&($k!=$i))
{
$flags = false;
break;
}
}
if($flags)
{
$W[$i][$j] = 1;
}else $W[$i][$j] = 0;
}
}
*/
return $W;
}
//-------------------------------------------------------------------- /*
*获得 F_W_M
*/
//--------------------------------------------------------------------
function F_W_M($train,$M,$W)
{
$fwm = 0;
for($i=1;$i<=count($M);$i++)
{
for($j=1;$j<count($train);$j++)
{
$fwm += dis($train[$j],$M[$i-1])*$W[$i][$j];
}
}
/* echo "<pre>";
//print_r($W);
echo "<pre>";
print_r($fwm);
*/
return $fwm;
}
//-------------------------------------------------------------------- /*
*获得新的矩阵M单行元素
*/
//--------------------------------------------------------------------
function New_SingleM($array)
{
$new_m = array();
array_splice($new_m,0,1);
for($i=1;$i<count($array[0])-1;$i++)
{
$temp = array();
array_splice($temp,0,1);
for($j=0;$j<count($array);$j++)
{
$flags = true;
for($k=0;$k<count($temp);$k++)
{
if($temp[$k][0]==$array[$j][$i])
{
$flags = false;
$temp[$k][1]++;
}
}
if($flags)
{
array_push($temp,array($array[$j][$i],1));
}
}
$max[0]=$temp[0][0];
$max[1]=$temp[0][1];
for($j=1;$j<count($temp);$j++)
{
if($temp[$j][1]>$max[1])
{
$max[0]=$temp[$j][0];
$max[1]=$temp[$j][1];
}
}
array_push($new_m,$max[0]);
/*
echo "<pre>";
print_r($temp);
print_r($max[0]);
*/
}
/*
echo "<pre>";
print_r($new_m);
*/
return $new_m;
}
//-------------------------------------------------------------------- /*
*获得新的矩阵M
*/
//--------------------------------------------------------------------
function New_M($train,$W)
{
$new_train = array(NULL);
array_splice($new_train,0,1);
for($i=1;$i<count($W);$i++)
{
$array = array(NULL);
array_splice($array,0,1);
for($j=1;$j<=count($W[1]);$j++)
{
if($W[$i][$j]==1)
{
array_push($array,$train[$j]);
}
}
array_push($new_train,$array);
}
$new_M = array();
array_splice($new_M,0,1);
for($i=0;$i<count($new_train);$i++)
{
array_push($new_M,New_SingleM($new_train[$i]));
}
/* echo "<pre>";
print_r($new_train); echo "<pre>";
print_r($new_M);
*/
return $new_M;
}
//-------------------------------------------------------------------- /*
*Kmodes算法
*$m,&$w,返回矩阵M,W
*/
//--------------------------------------------------------------------
function Kmodes($train,&$m,&$w)
{
$M = first_M($train);
$FWM = 1;
$FWM2 =0;
while(abs($FWM2 - $FWM)>0)
{
$W = W($train,$M);
$FWM = F_W_M($train,$M,$W);
$M = New_M($train,$W);
$FWM2 = F_W_M($train,$M,$W); if(abs($FWM2 - $FWM )>0)
{
$FWM = $FWM2;
$W = W($train,$M2);
$FWM2 = F_W_M($train,$M,$W);
}
}
$m = $M;
$w = $W;
}
//-------------------------------------------------------------------- /*
*把.txt中的内容读到数组中保存
*$filename:文件名称
*/
//--------------------------------------------------------------------
function getFileContent($filename)
{
$array = array(null);
$content = file_get_contents($filename);
$result = explode("\r\n",$content);
//print_r(count($result));
for($j=0;$j<count($result);$j++)
{
//print_r($result[$j]."<br>");
$con = explode(" ",$result[$j]);
array_push($array,$con);
}
array_splice($array,0,1);
return $array;
}
//-------------------------------------------------------------------- /*
*把数组中内容写到.txt中保存
*$result:要存储的数组内容
*$filename:文件名称
*/
//--------------------------------------------------------------------
function Array_Totxt($result,$filename)
{
$fp= fopen($filename,'wb');
for($i=0;$i<count($result);$i++)
{
$temp = NULL;
for($j=0;$j<=count($result[$i]);$j++)
{
$temp = $result[$i][$j]."\t";
fwrite($fp,$temp);
}
fwrite($fp,"\r\n");
}
fclose($fp);
}
//--------------------------------------------------------------------
$train = getFileContent("train.txt");
Kmodes($train,$M,$W);
Array_Totxt($M,"M.txt");
Array_Totxt($W,"w.txt"); ?>
M矩阵:
W矩阵:
K-Modes算法[聚类算法]的更多相关文章
- K-means算法[聚类算法]
聚类算法k-Means的实现 <?php /* *Kmeans法(聚类算法的实现) */ /* *求误差平方和J */ //----------------------------------- ...
- 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法
聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数 - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- K均值聚类算法的MATLAB实现
1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这 ...
- Kmeans算法的K值和聚类中心的确定
0 K-means算法简介 K-means是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一. K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的 ...
- 聚类算法:K-means 算法(k均值算法)
k-means算法: 第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...
- 聚类算法:K均值、凝聚层次聚类和DBSCAN
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...
随机推荐
- jquery.ellipsis.js段落超出省略号插件
为了实现在段落尾部超出文字替换为省略号,自己写的插件,并作了简单的优化. 下面给出脚本演示页面及注释,在此之前介绍一下插件参数 1.lineNum:数字.限制段落的行数 2.english:布尔.英文 ...
- 浅谈C++中指针和引用的区别
指针和引用在C++中很常用,但是对于它们之间的区别很多初学者都不是太熟悉,下面来谈谈他们2者之间的区别和用法. 1.指针和引用的定义和性质区别: (1)指针:指针是一个变量,只不过这个变量存储的是一个 ...
- HttpServletRequest 各种方法总结(转自百度经验)
HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,开发人员通过这个对象的方法,可以获得客户这些信息. req ...
- MYSQL区分大小写
MYSQL区分大小写 1.linux下mysql安装完后是默认:区分表名的大小写,不区分列名的大小写: 2.用root帐号登录后,在/etc/my.cnf 中的[mysqld]后添加添加lower ...
- javascript新窗口打开链接window.open()被阻拦的解决办法
场景是ajax提交,比较后端效验数据,需要用户登录,提示后并需要新窗口打开登录的链接,使用window.open(url);往往会被浏览器认为是广告而被拦截. data.url是ajax返回的链接地址 ...
- Docker容器
Docker容器 Docker容器 1. 容器基本操作 启动容器: 1.docker run IMAGE [COMMAND] [ARG...]2. 演示: 1.[KANO@kelvin ~]$ doc ...
- js私有化属性
我们先来看一个例子: var Demo1 = function(val){ this.value = val; this.getValue = function(){ return this.valu ...
- 图的邻接链表实现(c)
参考:算法:C语言实现 一书 实现: #ifndef GRAPH #define GRAPH #include<stdio.h> #include<stdlib.h> stru ...
- retain、strong、weak、assign区别
1. 假设你用malloc分配了一块内存,并且把它的地址赋值给了指针a,后来你希望指针b也共享这块内存,于是你又把a赋值给(assign)了b.此时a 和b指向同一块内存,请问当a不再需要这块内存,能 ...
- ARM Cortex M3(V7-M架构)硬件启动程序 一
Cortex-m3启动代码分析笔记 启动代码文件名是STM32F10X.S,它的作用先总结下,然后再分析. 启动代码作用一般是: 1)堆和栈的初始化: 2)中断向量表定义: 3)地址重映射及中断向量表 ...