本文有两重目的,一是在性能方面快速对比下R语言和Spark,二是想向大家介绍下Spark的机器学习库

背景介绍

由于R语言本身是单线程的,所以可能从性能方面对比Spark和R并不是很明智的做法。即使这种比较不是很理想,但是对于那些曾经遇到过这些问题的人,下文中的一些数字一定会让你很感兴趣。

你是否曾把一个机器学习的问题丢到R里运行,然后等上好几个小时?而仅仅是因为没有可行的替代方式,你只能耐心地等。所以是时候去看看Spark的机器学习了,它包含R语言大部分的功能,并且在数据转换和性能上优于R语言。

曾经我尝试过利用不同的机器学习技术——R语言和Spark的机器学习,去解决同一个特定的问题。为了增加可比性,我甚至让它们运行在同样的硬件环境和操作系统上。并且,在Spark中运行单机模式,不带任何集群的配置。

在我们讨论具体细节之前,关于Revolution R 有个简单的说明。作为R语言的企业版,Revolution R试图弥补R语言单线程的缺陷。但它只能运行在像Revolution Analytics这样的专有软件上,所以可能不是理想的长期方案。如果想获得微软Revolution Analytics软件的扩展,又可能会让事情变得更为复杂,比方说牵扯到许可证的问题。

因此,社区支持的开源工具,像是Spark,可能成为比R语言企业版更好的选择。

数据集和问题

分析采用的是Kaggle网站 [译者注:Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle.com/上的数字识别器的数据集,其中包含灰度的手写数字的图片,从0到9。

每张图片高28px,宽28px,大小为784px。每个像素都包含关于像素点明暗的值,值越高代表像素点越暗。像素值是0到255之间的整数,包括0和255。整张图片包含第一列在内共有785列数据,称为“标记”,即用户手写的数字。

分析的目标是得到一个可以从像素数值中识别数字是几的模型。

选择这个数据集的论据是,从数据量上来看,实质上这算不上是一个大数据的问题。

对比情况

针对这个问题,机器学习的步骤如下,以得出预测模型结束:

  • 在数据集上进行主成分分析线性判别式分析,得到主要的特征。(特征工程的步骤)[译者注:百度百科传送门,主成分分析线性判别式分析]。
  • 对所有双位数字进行二元逻辑回归,并且根据它们的像素信息和主成分分析以及线性判别式分析得到的特征变量进行分类。
  • 在全量数据上运行多元逻辑回归模型来进行多类分类。根据它们的像素信息和主成分分析以及线性判别式分析的特征变量,利用朴素贝叶斯分类模型进行分类。利用决策树分类模型来分类数字。

在上述步骤之前,我已经将标记的数据分成了训练组和测试组,用于训练模型和在精度上验证模型的性能。

大部分的步骤都在R语言和Spark上都运行了。详细的对比情况如下,主要是对比了主成分分析、二元逻辑模型和朴素贝叶斯分类模型的部分。

主成分分析

主成分分析的主要计算复杂度在对成分的打分上,逻辑步骤如下:

  • 通过遍历数据以及计算各列的协方差表,得到KxM的权重值。(K代表主成分的个数,M代表数据集的特征变量个数)。
  • 当我们对N条数据进行打分,就是矩阵乘法运算。
  • 通过NxM个维度数据和MxK个权重数据,最后得到的是NxK个主成分。N条数据中的每一条都有K个主成分。

在我们这个例子中,打分的结果是42000 x 784的维度矩阵与784 x 9的矩阵相乘。坦白说,这个计算过程在R中运行了超过4个小时,而同样的运算Spark只用了10秒多

矩阵相乘差不多是3亿次运算或者指令,还有相当多的检索和查找操作,所以Spark的并行计算引擎可以在10秒钟完成还是非常令人惊讶的。

我通过查看前9个主成分的方差,来验证了所产生的主成分的精度。方差和通过R产生的前9个主成分的方差吻合。这一点确保了Spark并没有牺牲精度来换取性能和数据转换上的优势。

逻辑回归模型

与主成分分析不同的是,在逻辑回归模型中,训练和打分的操作都是需要计算的,而且都是极其密集的运算。在这种模型的通用的数据训练方案中包含一些对于整个数据集矩阵的转置和逆运算。

由于计算的复杂性,R在训练和打分都需要过好一会儿才能完成,准确的说是7个小时,而Spark只用了大概5分钟。

这里我在45个从0到9的双位数字上运行了二元逻辑回归模型,打分/验证也是在这45个测试数据上进行的。

我也并行执行了多元逻辑回归模型,作为多类分类器,大概3分钟就完成了。而这在R上运行不起来,所以我也没办法在数据上进行对比。

对于主成分分析,我采用AUC值 [译者注: AUC的值就是计算出ROC曲线下面的面积,是度量分类模型好坏的一个标准。] 来衡量预测模型在45对数据上的表现,而Spark和R两者运行的模型结果的AUC值差不多。

朴素贝叶斯分类器

与主成分分析和逻辑回归不一样的是,朴素贝叶斯分类器不是密集计算型的。其中需要计算类的先验概率,然后基于可用的附加数据得到后验概率。[译者注:先验概 率是指根据以往经验和分析得到的概率,它往往作为”由因求果”问题中的”因”出现的概率;后验概率是指在得到“结果”的信息后重新修正的概率,是“执果寻 因”问题中的”果”。]

如上图所示,R大概花了45余秒完成,而Spark只用了9秒钟。像之前一样,两者的精确度旗鼓相当。

同时我也试着用Spark机器学习运行了决策树模型,大概花了20秒,而这个在R上完全运行不起来。

Spark机器学习入门指南

对比已经足够,而这也成就了Spark的机器学习。 最好是从编程指南开始学习它。不过,如果你想早点尝试并从实践中学习的话,你可能要痛苦一阵子才能将它运行起来吧。

为搞清楚示例代码并且在数据集上进行试验,你需要先去弄懂Spark的RDD [译者注:RDD,Resilient Distributed Datasets弹性分布式数据集] 支持的基本框架和运算。然后也要弄明白Spark中不同的机器学习程序,并且在上面进行编程。当你的第一个Spark机器学习的程序跑起来的时候,你可能 就会意兴阑珊了。

以下两份资料可以帮你避免这些问题,同时理顺学习的思路:

产能和精度

人们会使用不同的指标来衡量这些工具的好坏。对我来说,精准度和产能是决定性的因素。

大家总是喜欢R多过于Spark机器学习,是因为经验学习曲线。他们最终只能选择在R上采用少量的样本数据,是因为R在大数据量的样本上花了太多时间,而这也影响了整个系统的性能。

对我来说,用少量的样本数据是解决不了问题的,因为少量样本根本代表不了整体(至少在大部分情况下是这样)。所以说,如果你使用了少量样本,就是在精度上选择了妥协。

一旦你抛弃了少量样本,就归结到了生产性能的问题。机器学习的问题本质上就是迭代的问题。如果每次迭代都花费很久的话,那么完工时间就会延长。可是,如果每次迭代只用一点时间的话,那么留给你敲代码的时间就会多一些了。

结论

R语言包含了统计计算的库和像ggplot2这样可视化分析的库,所以它不可能被完全废弃,而且它所带来的挖掘数据和统计汇总的能力是毋庸置疑的。

但是,当遇到在大数据集上构建模型的问题时,我们应该去挖掘一些像Spark ML的工具。Spark也提供R的包,SparkR可以在分布式数据集上应用R。

最好在你的“数据军营”中多放点工具,因为你不知道在“打仗”的时候会遇到什么。因此,是时候从过去的R时代迈入Spark ML的新时代了。

大数据工具比较:R 语言和 Spark 谁更胜一筹?的更多相关文章

  1. [转载]Java程序员使用的20几个大数据工具

    最近我问了很多Java开发人员关于最近12个月内他们使用的是什么大数据工具. 这是一个系列,主题为: 语言web框架应用服务器SQL数据访问工具SQL数据库大数据构建工具云提供商今天我们就要说说大数据 ...

  2. Java程序员使用的20几个大数据工具

    最近我问了很多Java开发人员关于最近12个月内他们使用的是什么大数据工具. 这是一个系列,主题为: 语言 web框架 应用服务器 SQL数据访问工具 SQL数据库 大数据 构建工具 云提供商 今天我 ...

  3. 大数据工具——Splunk

    Splunk是机器数据的引擎.使用 Splunk 可收集.索引和利用所有应用程序.服务器和设备(物理.虚拟和云中)生成的快速移动型计算机数据 .从一个位置搜索并分析所有实时和历史数据. 使用 Splu ...

  4. Java程序员在用的大数据工具,MongoDB稳居第一!

    据日前的一则大数据工具使用情况调查,我们知道了Java程序猿最喜欢用的大数据工具. 问题:他们最近一年最喜欢用什么工具或者是框架? 受访者可以选择列表中的选项或者列出自己的,本文主要关心的是大数据工具 ...

  5. 大数据工具篇之Hive与MySQL整合完整教程

    大数据工具篇之Hive与MySQL整合完整教程 一.引言 Hive元数据存储可以放到RDBMS数据库中,本文以Hive与MySQL数据库的整合为目标,详细说明Hive与MySQL的整合方法. 二.安装 ...

  6. 大数据工具篇之Hive与HBase整合完整教程

    大数据工具篇之Hive与HBase整合完整教程 一.引言 最近的一次培训,用户特意提到Hadoop环境下HDFS中存储的文件如何才能导入到HBase,关于这部分基于HBase Java API的写入方 ...

  7. 【Social listening实操】如何运用免费的大数据工具获得行业洞察?

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 当我们想要创业却对市场行情不甚了解,该如何迅速了解市场行情 ...

  8. 23个适合Java开发者的大数据工具和框架

    转自:https://www.yidianzixun.com/article/0Ff4gqZQ?s=9&appid=yidian&ver=3.8.4&utk=6n9c2z37 ...

  9. 大数据核心知识点:Hbase、Spark、Hive、MapReduce概念理解,特点及机制

    今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用 ...

随机推荐

  1. SPRING的事务配置详解

    spring事务配置的两种方式: 1.基于XML的事务配置.2.基于注解方式的事务配置. 前言:在我们详细介绍spring的两种声明式事务管理之前,我们需要先理解这些概念 1)spring的事务管理是 ...

  2. cvLogPolar函数详解

    对于二维图形,Log-polar转换表示从笛卡尔坐标到极坐标的变化,广泛应用在计算机视觉中.此函数模仿人类视网膜中央凹视力,并且对于目标跟踪等可用于快速尺度和旋转变换不变模板匹配. 本例程实现极坐标变 ...

  3. vue 错误分析

    1  点击事件发生的错误 原因是,重复触发事件函数导致   改为不一样的名字即可 2  提示 : “ vuex] Expects string as the type, but found undef ...

  4. Ubuntu启动时a start job is running for dev-disk-by延时解决

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  5. [development][dpdk][hugepage] 大页内存的挂载

    参考: [development][dpdk][hugepage] 为不同的结点分配不同大小的大页内存 完成了以上内容之后, 下一步需要做的是挂载, 大页内存只有被挂载了之后,才能被应用程序使用. 挂 ...

  6. 洛谷P4587 神秘数 [FJOI2016] 主席树

    正解:主席树 解题报告: 先放下传送门QAQ 首先可以先思考如果只有一组询问,怎么解决 可以这么想,最开始一个数也麻油的时候能表示的最大的数是0嘛 然后先排个序,按顺序每次新加入一个数x,设加入这个数 ...

  7. tomcat 的acceptCount、acceptorThreadCount、maxConnections、maxThreads 如何确定

    acceptCount 连接在被ServerSocketChannel accept之前就暂存在这个队列中,acceptCount就是这个队列的最大长度. ServerSocketChannel ac ...

  8. mysql 设置 innodb_print_all_deadlocks=ON, 保存死锁日志

    Introduced 5.6.2 Command-Line Format --innodb-print-all-deadlocks=# System Variable Name innodb_prin ...

  9. 【Jmeter】if控制器+循环控制器+计数器,控制接口分支

    但是我不想这么做,接口只想写一次,让循环控制器和if控制器去判断接口,执行我想要的分支.这里遇到了一个问题,if控制器通过什么去判断接下来的分支?我引入了一个计数器的概念.起始值为0,每次循环加1,将 ...

  10. 移动端rem布局(阿里)

    该方案使用相当简单,把下面这段已压缩过的 原生JS(源码已在文章底部更新,2017/5/3) 放到 HTML 的 head 标签中即可(注:不要手动设置viewport,该方案自动帮你设置) < ...