题目链接

\(Descripiton\)

  给出文本串S和模式串T和k,S,T为DNA序列(只含\(A,T,G,C\))。对于S中的每个位置\(i\),只要\(s[i-k]\sim s[i+k]\)中有一个位置匹配了字符\(c\),那么就认为\(i\)可以匹配\(c\)。求S中有多少位置匹配了T。

\(Solution\)

  题意一直不很明白。。(→_→这就是你颓了一下午一晚上写了一道题的理由?)

  匹配当然是连续的,即若位置\(i\)匹配,则\(S[i+j]=T[j]\ (0\leq j<m)\)。

  我们枚举每个字符c,算出每个位置的\(F[j]\),表示当前匹配字符c,\(s[j]\sim s[j+m-1]\) 能够和 \(T[0]\sim T[m-1]\) 匹配的有多少个。

  令\(f[i]=[位置i可以和当前字符c匹配],g[i]=[\ T[i]==c\ ]\),那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]g[i]$$

  一个位置\(i\)满足4个字符的\(f[i]\)之和等于\(len(T)\),\(i\)才是一个合法的位置。(怎么可能\(>len(T)\)还有T本身限制呢→_→)

  同上一题,反转\(g[\ ]\)吧,那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]
g[m-1-i]=G[m-1+j]$$

  FFT算就行了。

  \(f[i]\)的预处理一遍前缀和就行啊。。

//467ms	22900KB
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=524300;//2^{19}=524288
const double PI=acos(-1); int n,m,k,sum[200005],id[150],cnt[N];
char s[200005],t[200005];
struct Complex
{
double x,y;
Complex() {}
Complex(double x,double y):x(x),y(y) {}
Complex operator + (const Complex &a)const{
return Complex(x+a.x, y+a.y);
}
Complex operator - (const Complex &a)const{
return Complex(x-a.x, y-a.y);
}
Complex operator * (const Complex &a)const{
return Complex(x*a.x-y*a.y, x*a.y+y*a.x);
}
}f[N],g[N]; void FFT(Complex *a,int lim,int opt)
{
for(int i=0,j=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
if(opt==-1) for(int i=0; i<lim; ++i) a[i].x/=lim;//!
}
void Solve(int x,int lim)
{
memset(sum,0,sizeof sum);
for(int i=0; i<=n; ++i)
if(id[s[i]]==x) ++sum[std::max(0,i-k)], --sum[std::min(n+1,i+k+1)];
for(int i=1; i<=n; ++i) sum[i]+=sum[i-1]; for(int i=0; i<=n; ++i) f[i]=Complex((sum[i]>0),0);
for(int i=n+1; i<lim; ++i) f[i]=Complex(0,0);//Don't forget to clear it.
for(int i=0; i<=m; ++i) g[m-i]=Complex(id[t[i]]==x,0);
for(int i=m+1; i<lim; ++i) g[i]=Complex(0,0);
FFT(f,lim,1), FFT(g,lim,1);
for(int i=0; i<lim; ++i) f[i]=f[i]*g[i];
FFT(f,lim,-1); for(int i=0; i<=n; ++i) cnt[i]+=int(f[m+i].x+0.5);
} int main()
{
scanf("%d%d%d%s%s",&n,&m,&k,s,t), --n, --m;
id['A']=0, id['T']=1, id['G']=2, id['C']=3;
int lim=1;
while(lim <= n+m) lim<<=1;
for(int i=0; i<4; ++i) Solve(i,lim);
int ans=0;
for(int i=0; i<=n; ++i) if(cnt[i]==m+1) ++ans;
printf("%d",ans); return 0;
}

Codeforces.528D.Fuzzy Search(FFT)的更多相关文章

  1. CodeForces - 528D Fuzzy Search (FFT求子串匹配)

    题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置. 分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法 ...

  2. CodeForces 528D Fuzzy Search 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8782849.html 题目传送门 - CodeForces 528D 题意 给你两个串$A,B(|A|\geq| ...

  3. codeforces 528D Fuzzy Search

    链接:http://codeforces.com/problemset/problem/528/D 正解:$FFT$. 很多字符串匹配的问题都可以用$FFT$来实现. 这道题是要求在左边和右边$k$个 ...

  4. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  5. 2019.01.26 codeforces 528D. Fuzzy Search(fft)

    传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...

  6. ●codeforces 528D Fuzzy Search

    题链: http://codeforces.com/problemset/problem/528/D 题解: FFT 先解释一下题意: 给出两个字符串(只含'A','T','C','G'四种字符),一 ...

  7. CF 528D. Fuzzy Search NTT

    CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...

  8. [Codeforces 580D]Fizzy Search(FFT)

    [Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...

  9. CF528D. Fuzzy Search [FFT]

    CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...

随机推荐

  1. 无责任共享 Coursera、Udacity 等课程视频(转载)

    转载链接:https://www.zybuluo.com/illuz/note/71868 B站计划:https://www.zybuluo.com/illuz/note/832995#cs基础课程

  2. 3D中的OBJ文件格式详解

    常见到的*.obj文件有两种:第一种是基于COFF(Common Object File Format)格式的OBJ文件(也称目标文件),这种格式用于编译应用程序:第二种是Alias|Wavefron ...

  3. openstack新版本ocata的接口改动

    新增placement API,部分替代了原先的nova api的部分功能接口 可在此页面查看API详情及示例:https://specs.openstack.org/openstack/nova-s ...

  4. vue系列之webstrom的设置

    1.安装vue插件,方法 Setting->Plugins,点击Plugins,在右边输入vue,找到相应插件,然后安装 2.创建vue模板 注意红圈里面的 3.设置vue文件支持的样式 注意: ...

  5. 恋爱Linux(Fedora20)1——安装开启ssh服务

    1) 安装openssh-server # yum install openssh-server 2) 查看是否已成功安装openssh-server # rpm -qa | grep openssh ...

  6. QA CodeDiff做什么?什么时间做?

    一.QA CodeDiff都在做什么 1.防止开发合并代码出错.要不删除了别人的要不删除了自己的,比如代码冲突后简单的选择使用他人或自己: 2.开发夹杂私货,在不通知QA的情况下私自修改bug或增加功 ...

  7. 【ES】学习4-结构化搜索

    1. 结构化搜索得到的结果只有是和否,没有相似概念. term可以实现精确值查询 curl -XGET 'localhost:9200/logstash-cowrie/_search?pretty' ...

  8. 性能测试三:jmeter进阶之图形插件

    一.图形化插件的使用 使用Jmeter插件可以更直观的查看tps和响应时间 插件官网: http://jmeter-plugins.org/downloads/all 第一种方法,找到需要的插件下载j ...

  9. python 全栈开发,Day62(外键的变种(三种关系),数据的增删改,单表查询,多表查询)

    一.外键的变种(三种关系) 本节重点: 如何找出两张表之间的关系 表的三种关系 一.介绍 因为有foreign key的约束,使得两张表形成了三种了关系: 多对一 多对多 一对一 二.重点理解如果找出 ...

  10. windows service程序的Environment.CurrentDirectory路径

    当前工作目录Environment.CurrentDirectory,对于winform程序,其是在程序放置的目录里, 而windows service的Environment.CurrentDire ...