题目链接

\(Descripiton\)

  给出文本串S和模式串T和k,S,T为DNA序列(只含\(A,T,G,C\))。对于S中的每个位置\(i\),只要\(s[i-k]\sim s[i+k]\)中有一个位置匹配了字符\(c\),那么就认为\(i\)可以匹配\(c\)。求S中有多少位置匹配了T。

\(Solution\)

  题意一直不很明白。。(→_→这就是你颓了一下午一晚上写了一道题的理由?)

  匹配当然是连续的,即若位置\(i\)匹配,则\(S[i+j]=T[j]\ (0\leq j<m)\)。

  我们枚举每个字符c,算出每个位置的\(F[j]\),表示当前匹配字符c,\(s[j]\sim s[j+m-1]\) 能够和 \(T[0]\sim T[m-1]\) 匹配的有多少个。

  令\(f[i]=[位置i可以和当前字符c匹配],g[i]=[\ T[i]==c\ ]\),那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]g[i]$$

  一个位置\(i\)满足4个字符的\(f[i]\)之和等于\(len(T)\),\(i\)才是一个合法的位置。(怎么可能\(>len(T)\)还有T本身限制呢→_→)

  同上一题,反转\(g[\ ]\)吧,那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]
g[m-1-i]=G[m-1+j]$$

  FFT算就行了。

  \(f[i]\)的预处理一遍前缀和就行啊。。

//467ms	22900KB
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=524300;//2^{19}=524288
const double PI=acos(-1); int n,m,k,sum[200005],id[150],cnt[N];
char s[200005],t[200005];
struct Complex
{
double x,y;
Complex() {}
Complex(double x,double y):x(x),y(y) {}
Complex operator + (const Complex &a)const{
return Complex(x+a.x, y+a.y);
}
Complex operator - (const Complex &a)const{
return Complex(x-a.x, y-a.y);
}
Complex operator * (const Complex &a)const{
return Complex(x*a.x-y*a.y, x*a.y+y*a.x);
}
}f[N],g[N]; void FFT(Complex *a,int lim,int opt)
{
for(int i=0,j=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
if(opt==-1) for(int i=0; i<lim; ++i) a[i].x/=lim;//!
}
void Solve(int x,int lim)
{
memset(sum,0,sizeof sum);
for(int i=0; i<=n; ++i)
if(id[s[i]]==x) ++sum[std::max(0,i-k)], --sum[std::min(n+1,i+k+1)];
for(int i=1; i<=n; ++i) sum[i]+=sum[i-1]; for(int i=0; i<=n; ++i) f[i]=Complex((sum[i]>0),0);
for(int i=n+1; i<lim; ++i) f[i]=Complex(0,0);//Don't forget to clear it.
for(int i=0; i<=m; ++i) g[m-i]=Complex(id[t[i]]==x,0);
for(int i=m+1; i<lim; ++i) g[i]=Complex(0,0);
FFT(f,lim,1), FFT(g,lim,1);
for(int i=0; i<lim; ++i) f[i]=f[i]*g[i];
FFT(f,lim,-1); for(int i=0; i<=n; ++i) cnt[i]+=int(f[m+i].x+0.5);
} int main()
{
scanf("%d%d%d%s%s",&n,&m,&k,s,t), --n, --m;
id['A']=0, id['T']=1, id['G']=2, id['C']=3;
int lim=1;
while(lim <= n+m) lim<<=1;
for(int i=0; i<4; ++i) Solve(i,lim);
int ans=0;
for(int i=0; i<=n; ++i) if(cnt[i]==m+1) ++ans;
printf("%d",ans); return 0;
}

Codeforces.528D.Fuzzy Search(FFT)的更多相关文章

  1. CodeForces - 528D Fuzzy Search (FFT求子串匹配)

    题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置. 分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法 ...

  2. CodeForces 528D Fuzzy Search 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8782849.html 题目传送门 - CodeForces 528D 题意 给你两个串$A,B(|A|\geq| ...

  3. codeforces 528D Fuzzy Search

    链接:http://codeforces.com/problemset/problem/528/D 正解:$FFT$. 很多字符串匹配的问题都可以用$FFT$来实现. 这道题是要求在左边和右边$k$个 ...

  4. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  5. 2019.01.26 codeforces 528D. Fuzzy Search(fft)

    传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...

  6. ●codeforces 528D Fuzzy Search

    题链: http://codeforces.com/problemset/problem/528/D 题解: FFT 先解释一下题意: 给出两个字符串(只含'A','T','C','G'四种字符),一 ...

  7. CF 528D. Fuzzy Search NTT

    CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...

  8. [Codeforces 580D]Fizzy Search(FFT)

    [Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...

  9. CF528D. Fuzzy Search [FFT]

    CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...

随机推荐

  1. SpringBoot使用外置的Servlet容器

    SpringBoot默认使用嵌入式的Servlet容器,应用打包成可执行的jar包 优点:简单.便携 缺点:默认不支持jsp,优化定制比较复杂(使用定制器serverProperties.自定义Emb ...

  2. 【PE结构】PIMAGE_FILE_HEADER中TimeDateStamp的时间戳与标准时间转换

    计算PE文件创建时间,需要对时间进行转换,也就是将时间戳转换成特定的格式,或者特定的格式转换成时间戳. pImageFileHeader->TimeDateStamp的值为1487665851 ...

  3. HDFS安全模式

    用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下: enter - 进入安全模式 leave - 强制NameNode离开安全模式 get - 返 ...

  4. Epoll模型

    Epoll模型 相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率.因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多.并且,在l ...

  5. ioremap 与 mmap【转】

    转自:http://blog.csdn.net/junllee/article/details/7415732 内存映射 对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件 ...

  6. 自动化监控白皮书——WAS监控

    WebSphere(WAS)是一些大型企业常用的中间件,由于was自身提供的工具有时不能满足多样化的监控需求,而我们又会经常遇到对was进行监控的应用场景,所以我们有必要自己动手做一些was的监控脚本 ...

  7. 如何用jQuery获得select的值

    如何用jQuery获得select的值,在网上找了看了一下,下面将总结一下: 1.获取第一个option的值        $('#test option:first').val(); 2.最后一个o ...

  8. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  9. 改变input标签中placeholder显示的颜色

    ::-webkit-input-placeholder { /* WebKit browsers */ color: #A9A9A9; } :-moz-placeholder { /* Mozilla ...

  10. poj3728 倍增法lca 好题!

    lca的好题!网上用st表和离线解的比较多,用树上倍增也是可以做的 不知道错在哪里,等刷完了这个专题再回来看 题解链接https://blog.csdn.net/Sd_Invol/article/de ...