一,问题描述

给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列?

比如入栈序列为:1 2 3  ,则出栈序列一共有五种,分别如下:1 2 3、1 3 2、2 1 3、2 3 1、3 2 1

二,问题分析

先介绍几个规律:

对于出栈序列中的每一个数字,在它后面的、比它小的所有数字,一定是按递减顺序排列的。

比如入栈顺序为:1 2 3 4。

出栈顺序:4 3 2 1是合法的,对于数字 4 而言,比它小的后面的数字是:3 2 1,且这个顺序是递减顺序。同样地,对于数字 3 而言,比它小的后面的数字是: 2 1,且这个顺序是递减的。....

出栈顺序:1 2 3 4 也是合法的,对于数字 1 而言,它后面没有比它更小的数字。同样地,对于数字 2 而言,它后面也没有比它更小的数字。

出栈顺序:3 2 4 1 也是合法的,对于数字 3 而言,它后面比 3 小的数字有: 2 1,这个顺序是递减的;对于数字 2 而言,它后面的比它 小的数字只有 1,也算符合递减顺序;对于数字 4 而言,它后面的比它小的数字也只有1,因此也符合递减顺序。

出栈顺序:3 1 4 2 是不合法的,因为对于数字 3 而言,在3后面的比3小的数字有:1 2,这个顺序是一个递增的顺序(1-->2)。

因此,当给定一个序列时,通过这个规律 可以轻松地判断 哪些序列是合法的,哪些序列是非法的。

②给定一个入栈顺序:1  2  3 .... n,一共有多少种合法的出栈顺序?参考:百度百科卡特兰数

答案是 卡特兰数。即一共有:h(n)=c(2n,n)/(n+1) 种合法的出栈顺序。

如果仅仅只需要求出一共有多少种合法的出栈顺序,其实就是求出组合 C(2n,n)就可以了。而求解C(2n,n),则可以用动态规划来求解,具体可参考: 排列与组合的一些定理

三,代码实现

给定一个入栈顺序,比如 1 2 3 ,如何输出所有可能的出栈顺序?

思路①:先求出入栈顺序的所有排列(即全排列),并将排列保存到一个LinkedList<String>中,然后依次遍历每一个序列,判断该序列是否是合法的序列。

所谓合法的序列,就是满足上面的规律1:对于出栈序列中的每一个数字,在它后面的、比它小的所有数字,一定是按递减顺序排列的。 关于如何求解一个序列的全排列,可参考:JAVA求解全排列

完整代码实现如下:(实现得不好,感觉比较复杂)

import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList; public class AllStackPopOrder { public static LinkedList<String> allPermutation(String str){
if(str == null || str.length() == 0)
return null;
//保存所有的全排列
LinkedList<String> listStr = new LinkedList<String>(); allPermutation(str.toCharArray(), listStr, 0); //print(listStr);//打印全排列
return listStr;
} private static void allPermutation(char[] c, LinkedList<String> listStr, int start){ if(start == c.length-1)
listStr.add(String.valueOf(c));
else{
for(int i = start; i <= c.length-1; i++)
{
//只有当没有重叠的字符 才交换
if(!isSwap(c, start, i))
{
swap(c, i, start);//相当于: 固定第 i 个字符
allPermutation(c, listStr, start+1);//求出这种情形下的所有排列
swap(c, start, i);//复位
}
}
}
} private static void swap(char[] c, int i, int j){
char tmp;
tmp = c[i];
c[i] = c[j];
c[j] = tmp;
} private static void print(LinkedList<String> listStr)
{
Collections.sort(listStr);//使字符串按照'字典顺序'输出
for (String str : listStr) {
System.out.println(str);
}
System.out.println("size:" + listStr.size());
} //[start,end) 中是否有与 c[end] 相同的字符
private static boolean isSwap(char[] c, int start, int end)
{
for(int i = start; i < end; i++)
{
if(c[i] == c[end])
return true;
}
return false;
} public static LinkedList<String> legalSequence(LinkedList<String> listStr){
Iterator<String> it = listStr.iterator();
String currentStr;
while(it.hasNext())//检查全排列中的每个序列
{
currentStr = it.next();
if(!check(currentStr))
it.remove();//删除不符合的出栈规律的序列
}
return listStr;
}
//检查出栈序列 str 是否 是合法的出栈 序列
private static boolean check(String str){
boolean result = true;
char[] c = str.toCharArray();
char first;//当前数字.
int k = 0;//记录 compare 数组中的元素个数
char[] compare = new char[str.length()];
for(int i = 0; i < c.length; i++)
{
first = c[i];
//找出在 first 之后的,并且比 first 小的数字
for(int j = i+1; j < c.length; j++)
{
if(c[j] > first)
continue;
else
{
compare[k++] = c[j];//将比当前数字小的 所有数字 放在compare数组中
}
}
if(k == 0)
continue;
else{
for(int m = 0; m < k-1; m++)//判断 compare 数组是否是 递减的顺序
{
if(compare[m] < compare[m+1])
{
result = false;//不符合递减顺序
return result;
}
}
}
k=0;
}
return result;
} //hapjin test
public static void main(String[] args) {
String str = "1234";
LinkedList<String> listStr = legalSequence(allPermutation(str));
print(listStr);
}
}

思路②:直接求出合法的出栈序列。【而不是像思路①那样:先求出所有可能的出栈序列(求全排列),然后再找出合法的出栈序列。】

待完成。

四,参考资料

JAVA求解全排列

出栈顺序(卡特兰数)

可能的出栈顺序

出栈顺序 与 卡特兰数(Catalan)的关系的更多相关文章

  1. vijos - P1122出栈序列统计 (卡特兰数)

    P1122出栈序列统计 未递交 标签:NOIP普及组2003[显示标签] 描写叙述 栈是经常使用的一种数据结构,有n令元素在栈顶端一側等待进栈,栈顶端还有一側是出栈序列. 你已经知道栈的操作有两·种: ...

  2. SDUT 1266 出栈序列统计(卡特兰数)

    这道题是回溯算法,网上一查是卡特兰数先占上代码,题解过两天会写. #include <bits/stdc++.h> using namespace std; int main() { // ...

  3. Catalan数与出栈顺序个数,Java编程模拟

    问题描述: 队列中有从1到7(由小到大排列)的7个整数,问经过一个整数栈后,出栈的所有排列数有多少?如果整数栈的容量是4(栈最多能容纳4个整数),那么出栈的排列数又是多少? 分析:对于每一个数字i, ...

  4. n个元素进栈,共有多少种出栈顺序?

    1.基于栈的问题分析 我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:                                   f(1) = 1     / ...

  5. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

  6. 卡特兰数 catalan number

    作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...

  7. 【讲●解】火车进出栈类问题 & 卡特兰数应用

    火车进出栈类问题详讲 & 卡特兰数应用 引题:火车进出栈问题 [题目大意] 给定 \(1\)~\(N\) 这\(N\)个整数和一个大小无限的栈,每个数都要进栈并出栈一次.如果进栈的顺序为 \( ...

  8. N个数依次入栈,出栈顺序有多少种

    题目:N个数依次入栈,出栈顺序有多少种? 首先介绍一下卡特兰数:卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 2 ...

  9. 浅谈卡特兰数(Catalan number)的原理和相关应用

    一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...

随机推荐

  1. [日常工作]Win2008r2 以及更高版本的操作系统安装Oracle10.2.0.5

    1. 当时有特殊需求, 客户有win2008r2sp1以上的windows系统,但是数据库要使用Oracle10.2.0.5 的版本. 问题: 1. Oracle10 最高支持到 Win2008sp2 ...

  2. xhtml和html的差別

    xhtml和html主要區別: 元素必須正確嵌套: 元素必須正確閉合: 必須要有根元素: 元素必須使用小寫. xhtml語法: 屬性名必須小寫: 屬性值必須帶引號: 使用id代替name: lang屬 ...

  3. luogu1856

    P1856 [USACO5.5]矩形周长Picture 题目背景 墙上贴着许多形状相同的海报.照片.它们的边都是水平和垂直的.每个矩形图片可能部分或全部的覆盖了其他图片.所有矩形合并后的边长称为周长. ...

  4. BBS论坛项目

    一.表结构设计: 1.帖子: class Article(models.Model): title = models.CharField(max_length=255,unique=True) cat ...

  5. Mysql 主从服务器数据同步

    安装2台windows Server 服务器,分别安装Mysql,配置环境变量,完成安装确认在CMD窗口可以使用Mysql命令 在Master服务器上创建同步账号,确保Slave服务器能访问Maste ...

  6. 【题解】 Codeforces Edu44 F.Isomorphic Strings (字符串Hash)

    题面戳我 Solution 我们按照每个字母出现的位置进行\(hash\),比如我们记录\(a\)的位置:我们就可以把位置表示为\(0101000111\)这种形式,然后进行字符串\(hash\) 每 ...

  7. Leetcode 217.存在重复元素 By Python

    给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 示例 1: 输入: [1,2,3,1] 输出: true ...

  8. 自学工业控制网络之路2.2-PROFINET

    返回 自学工业控制网络之路 自学工业控制网络之路2.2-PROFINET PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技 ...

  9. Spark安装与介绍

    1. Scala的安装 注意点:版本匹配的问题, Spark 1.6.2 -- Scala2.10 Spark 2.0.0 -- Scala2.11 https://www.scala-lang.or ...

  10. Windows下修改Tomcat黑窗口标题

    在Tomcat的bin目录下,新建文件setenv.bat. 在文件内输入: set TITLE=MYTomcat-%date% %time%[%cd%] 可以把MYTomcat修改为自己定义的名字. ...