题目:[POI2014]KUR-Couriers

题解:

要求出现次数大于(R-L+1)/2的数,这样的数最多只有一个。我们对序列做主席树,每个节点记录出现的次数和(sum)。(这里忽略版本差值问题)对于一个节点,如果左儿子的sum小于等于(R-L+1)/2,则答案不可能在左儿子中;右儿子同理。然后对有可能的儿子递归寻找答案,如果左右儿子都不可能,则不存在答案。

代码:

BZOJ 3524:

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
inline int rd(){
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const int maxn=(5e5)+,maxm=maxn;
int N,M,L,R,root[maxn],num_treenode=,A;
struct Tree{
int l,r,sum,ls,rs;
}t[(maxn<<)+maxn*];
inline void Build(int x,int l,int r){
t[x].l=l;t[x].r=r;int mid=(l+r)>>;
if(l==r)return;
Build(t[x].ls=++num_treenode,l,mid);Build(t[x].rs=++num_treenode,mid+,r);
return;
}
inline void Update(int u,int x,int q){
int l=t[u].l,r=t[u].r,mid=(l+r)>>;
t[x].l=l;t[x].r=r;
if(l==r&&l==q){
t[x].sum=t[u].sum+;
return;
}
if(q<=mid){
t[x].rs=t[u].rs;
Update(t[u].ls,t[x].ls=++num_treenode,q);
}
else {
t[x].ls=t[u].ls;
Update(t[u].rs,t[x].rs=++num_treenode,q);
}
t[x].sum=t[t[x].ls].sum+t[t[x].rs].sum;
return;
}
inline int Query(int u,int x,int z){
int l=t[u].l,r=t[u].r;
if(l==r)return l;
if(t[t[x].ls].sum-t[t[u].ls].sum>z)return Query(t[u].ls,t[x].ls,z);
if(t[t[x].rs].sum-t[t[u].rs].sum>z)return Query(t[u].rs,t[x].rs,z);
return ;
}
int main(){
N=rd();M=rd();
Build(root[]=++num_treenode,,N);
for(int i=;i<=N;i++){
A=rd();
Update(root[i-],root[i]=++num_treenode,A);
}
while(M--){
L=rd();R=rd();
printf("%d\n",Query(root[L-],root[R],(R-L+)>>));
}
return ;
}

BZOJ 2223:

这道题的样例很坑,我整理了一下:


 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
inline int rd(){
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const int maxn=(3e5)+,maxm=;
int N,M,L,R,root[maxn],num_treenode=,A,ans,Lim;
struct Tree{
int l,r,sum,ls,rs;
}t[(maxn<<)+maxn*];
inline void Build(int x,int l,int r){
t[x].l=l;t[x].r=r;int mid=(l+r)>>;
if(l==r)return;
Build(t[x].ls=++num_treenode,l,mid);Build(t[x].rs=++num_treenode,mid+,r);
return;
}
inline void Update(int u,int x,int q){
int l=t[u].l,r=t[u].r,mid=(l+r)>>;
t[x].l=l;t[x].r=r;
if(l==r&&l==q){
t[x].sum=t[u].sum+;
return;
}
if(q<=mid){
t[x].rs=t[u].rs;
Update(t[u].ls,t[x].ls=++num_treenode,q);
}
else {
t[x].ls=t[u].ls;
Update(t[u].rs,t[x].rs=++num_treenode,q);
}
t[x].sum=t[t[x].ls].sum+t[t[x].rs].sum;
return;
}
inline int Query(int u,int x,int z){
int l=t[u].l,r=t[u].r;
if(l==r)return l;
if(t[t[x].ls].sum-t[t[u].ls].sum>z)return Query(t[u].ls,t[x].ls,z);
if(t[t[x].rs].sum-t[t[u].rs].sum>z)return Query(t[u].rs,t[x].rs,z);
return ;
}
int main(){
N=rd();Lim=rd();
Build(root[]=++num_treenode,,Lim);
for(int i=;i<=N;i++){
A=rd();
Update(root[i-],root[i]=++num_treenode,A);
}
M=rd();
while(M--){
L=rd();R=rd();
if(L>R){
printf("no\n");
continue;
}
ans=Query(root[L-],root[R],(R-L+)>>);
if(ans==)printf("no\n");else printf("yes %d\n",ans);
}
return ;
}

By:AlenaNuna

主席树||可持久化线段树||BZOJ 3524: [Poi2014]Couriers||BZOJ 2223: [Coci 2009]PATULJCI||Luogu P3567 [POI2014]KUR-Couriers的更多相关文章

  1. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  2. [BZOJ 4771]七彩树(可持久化线段树+树上差分)

    [BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...

  3. 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665

    如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...

  4. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  5. BZOJ.4771.七彩树(可持久化线段树)

    BZOJ 考虑没有深度限制,对整棵子树询问怎么做. 对于同种颜色中DFS序相邻的两个点\(u,v\),在\(dfn[u],dfn[v]\)处分别\(+1\),\(dfn[LCA(u,v)]\)处\(- ...

  6. 权值线段树&&可持久化线段树&&主席树

    权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出 ...

  7. BZOJ 3483 SGU505 Prefixes and suffixes(字典树+可持久化线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3483 [题目大意] 给出一些串,同时给出m对前缀后缀,询问有多少串满足给出的前缀后缀模 ...

  8. BZOJ 3439 Kpm的MCpassword Trie树+可持久化线段树

    题目大意:给定n个字符串,对于每一个字符串求以这个字符串为后缀的字符串中第k小的编号 首先将字符串反转 那么就变成了对于每一个字符串求以这个字符串为前缀的字符串中第k小的编号 然后考虑对字符串排序 那 ...

  9. BZOJ 4771: 七彩树 可持久化线段树+树链的并

    这个思路挺有意思的 ~ 利用树链的并来保证每个颜色只贡献一次,然后用可持久化线段树维护 code: #include <set> #include <cstdio> #incl ...

随机推荐

  1. how to check the computer is 32 bit or 64bit in linux

    just use cat /proc/cpuinfo in shell

  2. JAVA中对List<Map<String,Object>>中的中文汉字进行排序

    转载于:http://blog.csdn.net/flykos/article/details/54631573 参考:http://www.jb51.net/article/88710.htm 本篇 ...

  3. OpenLayers典型部分概述

    中文学习:http://www.openlayers.cn/portal.php 原文地址:https://www.jianshu.com/p/e693711a7008 一 OpenLayers核心职 ...

  4. WEBAPI 的简单示例

    一.webapi 1.在webapiconfig中移除xml的返回格式,返回格式就自动使用Json格式 config.Formatters.Remove(config.Formatters.XmlFo ...

  5. SNF开发平台-SNF.CodeGenerator-升级生成BS页面代码-支持视图-数据库配置-快速开发者的利器

    有一段时间没有进行总结SNF快速开发平台了,这段时间把今年在框架升级部分进行整理说明. 下面就把代码生成器升级部分介绍一下: 1.新增BS页面生成代码 2.新增视图支持 3.新增 数据库配置 1.新增 ...

  6. Numpy数组与PIL Image转换

    引用于这个博客

  7. 2. Attention Is All You Need(Transformer)算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

  8. [转]bootstrap table 动态列数

    原文地址:https://my.oschina.net/u/2356355/blog/1595563 据说bootstrap table非常好用,从入门教程中了解到它的以下主要功能: 由于固定表头意味 ...

  9. Linux系统备份与恢复

    序言:前面一篇文章简单地介绍了Linux系统备份与恢复的相关概念,这里接着上一篇介绍两个常用的备份与恢复命令. 1  常见的备份命令 在介绍下面的备份恢复命令之前先简单的说明一下: 如果我们只是要实现 ...

  10. hosts 不启作用的解决办法

    查各种编码ANSI flushdns无用 停止DNS Client  服务  0.0