Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括Hadoop Common、HDFS与MapReduce。

HDFS

HDFS是Hadoop分布式文件系统(Hadoop Distributed File System)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。

HDFS 架构原理

HDFS采用master/slave架构。一个HDFS集群包含一个单独的NameNode和多个DataNode。

NameNode作为master服务,它负责管理文件系统的命名空间和客户端对文件的访问。NameNode会保存文件系统的具体信息,包括文件信息、文件被分割成具体block块的信息、以及每一个block块归属的DataNode的信息。对于整个集群来说,HDFS通过NameNode对用户提供了一个单一的命名空间。

DataNode作为slave服务,在集群中可以存在多个。通常每一个DataNode都对应于一个物理节点。DataNode负责管理节点上它们拥有的存储,它将存储划分为多个block块,管理block块信息,同时周期性的将其所有的block块信息发送给NameNode。

下图为HDFS系统架构图,主要有三个角色,Client、NameNode、DataNode。

文件写入时:

Client向NameNode发起文件写入的请求。

NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。

Client将文件划分为多个block块,并根据DataNode的地址信息,按顺序写入到每一个DataNode块中。

当文件读取:

Client向NameNode发起文件读取的请求。

NameNode返回文件存储的block块信息、及其block块所在DataNode的信息。

Client读取文件信息。

HDFS 数据备份

HDFS被设计成一个可以在大集群中、跨机器、可靠的存储海量数据的框架。它将所有文件存储成block块组成的序列,除了最后一个block块,所有的block块大小都是一样的。文件的所有block块都会因为容错而被复制。每个文件的block块大小和容错复制份数都是可配置的。容错复制份数可以在文件创建时配置,后期也可以修改。HDFS中的文件默认规则是write one(一次写、多次读)的,并且严格要求在任何时候只有一个writer。NameNode负责管理block块的复制,它周期性地接收集群中所有DataNode的心跳数据包和Blockreport。心跳包表示DataNode正常工作,Blockreport描述了该DataNode上所有的block组成的列表。

备份数据的存放:

备份数据的存放是HDFS可靠性和性能的关键。HDFS采用一种称为rack-aware的策略来决定备份数据的存放。通过一个称为Rack Awareness的过程,NameNode决定每个DataNode所属rack id。缺省情况下,一个block块会有三个备份,一个在NameNode指定的DataNode上,一个在指定DataNode非同一rack的DataNode上,一个在指定DataNode同一rack的DataNode上。这种策略综合考虑了同一rack失效、以及不同rack之间数据复制性能问题。

副本的选择:

为了降低整体的带宽消耗和读取延时,HDFS会尽量读取最近的副本。如果在同一个rack上有一个副本,那么就读该副本。如果一个HDFS集群跨越多个数据中心,那么将首先尝试读本地数据中心的副本。

安全模式:

系统启动后先进入安全模式,此时系统中的内容不允许修改和删除,直到安全模式结束。安全模式主要是为了启动检查各个DataNode上数据块的安全性。

MapReduce

MapReduce 来源

MapReduce是由Google在一篇论文中提出并广为流传的。它最早是Google提出的一个软件架构,用于大规模数据集群分布式运算。任务的分解(Map)与结果的汇总(Reduce)是其主要思想。Map就是将一个任务分解成多个任务,Reduce就是将分解后多任务分别处理,并将结果汇总为最终结果。熟悉Function Language的人一定感觉很熟悉,不是什么新的思想。

MapReduce 处理流程

上图就是MapReduce大致的处理流程。在Map之前,可能还有对输入数据的Split过程以保证任务并行效率,在Map之后可能还有Shuffle过程来提高Reduce的效率以及减小数据传输的压力。

Hadoop

Hadoop被定位为一个易于使用的平台,以HDFS、MapReduce为基础,能够运行上千台PCServer组成的系统集群,并以一种可靠、容错的方式分布式处理请求。

Hadoop 部署

下图显示Hadoop部署结构示意图

在Hadoop的系统中,会有一台master,主要负责NameNode的工作以及JobTracker的工作。JobTracker的主要职责就是启动、跟踪和调度各个Slave的任务执行。还会有多台slave,每一台slave通常具有DataNode的功能并负责TaskTracker的工作。TaskTracker根据应用要求来结合本地数据执行Map任务以及Reduce任务。

Hadoop 处理流程

在描述Hadoop处理流程之前,先提一个分布式计算最为重要的设计原则:Moving Computation is Cheaper than Moving Data。意思是指在分布式计算中,移动计算的代价总是低于移动数据的代价。本地计算使用本地数据,然后汇总才能保证分布式计算的高效性。

下图所示Hadoop处理流程:

Hadoop介绍-2.分布式计算框架Hadoop原理及架构全解的更多相关文章

  1. Hadoop 三剑客之 —— 分布式计算框架 MapReduce

    一.MapReduce概述 二.MapReduce编程模型简述 三.combiner & partitioner 四.MapReduce词频统计案例         4.1 项目简介      ...

  2. 分布式计算框架Gearman原理详解

    什么是Gearman? Gearman提供了一个通用的应用程序框架,用于将工作转移到更适合于工作的其他机器或流程.它允许你并行工作,负载平衡处理,并在语言间调用函数.它可用于从高可用性网站到传输数据库 ...

  3. Dubbo的配置过程,实现原理及架构详解

    一. Dubbo是什么?Dubbo能做什么? 随着互联网的发展,市场需求快速变更,业务持续高速增长,网站早已从单一应用架构演变为分布式服务架构及流动计算架构.在分布式架构的背景下,在本地调用非本进程内 ...

  4. zabbix实现原理及架构详解

    想要用好zabbix进行监控,那么我们首要需要了解下zabbix这个软件的实现原理及它的架构.建议多阅读官方文档. 一.总体上zabbix的整体架构如下图所示: 重要组件说明: 1)zabbix se ...

  5. Hadoop介绍-3.HDFS介绍和YARN原理介绍

    一. HDFS介绍: Hadoop2介绍 HDFS概述 HDFS读写流程   1.  Hadoop2介绍 Hadoop是Apache软件基金会旗下的一个分布式系统基础架构.Hadoop2的框架最核心的 ...

  6. 分布式计算开源框架Hadoop入门实践

    目录(?)[+] Author :岑文初 Email: wenchu.cenwc@alibaba-inc.com msn: cenwenchu_79@hotmail.com blog: http:// ...

  7. 分布式计算开源框架Hadoop入门实践(三)

    Hadoop基本流程 一个图片太大了,只好分割成为两部分.根据流程图来说一下具体一个任务执行的情况. 在分布式环境中客户端创建任务并提交. InputFormat做Map前的预处理,主要负责以下工作: ...

  8. 本文将介绍“数据计算”环节中常用的三种分布式计算组件——Hadoop、Storm以及Spark。

    本文将介绍“数据计算”环节中常用的三种分布式计算组件——Hadoop.Storm以及Spark. 当前的高性能PC机.中型机等机器在处理海量数据时,其计算能力.内存容量等指标都远远无法达到要求.在大数 ...

  9. Hadoop 学习之路(三)—— 分布式计算框架 MapReduce

    一.MapReduce概述 Hadoop MapReduce是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到Hadoop集群上用于并行处理大规模的数据集. MapReduce作业通 ...

随机推荐

  1. Kylin简介

    来源 Cube: 用空间换时间(类似:BI分析) 预计算把用户需要查询的维度以及他们所对应的考量的值,存储在多维空间里 当用户查询某几个维度的时候,通过这些维度条件去定位到预计算的向量空间,通过再聚合 ...

  2. 【转载】谈谈自己对REST、SOA、SOAP、RPC、ICE、ESB、BPM知识汇总及理解

    转载自:https://blog.csdn.net/tantexian/article/details/48196453 SOA: 维基百科解释:SOA:面向服务的软件架构(Service Orien ...

  3. 1. dubbo概述

    dubbo简介: 官网:http://dubbo.io 最大程度进行解耦,降低系统耦合性,可以跨工程,跨项目; 生产者/消费者模式; jdk:1.6以上 maven:3.0以上 国际maven仓库:h ...

  4. L1-047. 装睡

    水题直接上代码: #include<iostream> #include<algorithm> using namespace std; int main() { int n; ...

  5. SqlServer中exists和in的区别

    1.in 2.exists

  6. js 垃圾回收机制和引起内存泄漏的操作

    垃圾回收机制 JS中最常见的垃圾回收方式是标记清除. 工作原理:是当变量进入环境时,将这个变量标记为“进入环境”.当变量离开环境时,则将其标记为“离开环境”.标记“离开环境”的就回收内存. 工作流程: ...

  7. 虚拟机上自动化部署(EFI网络安装)ESXi服务器遇到的问题

    1,虚拟机的CPU为2核或以上. 2,虚拟机选项中不选择: 启用UEFI安全引导.3,引导延迟:设置3000毫秒或以上 4,#GP Exception 13 in world 1:unknown @ ...

  8. Python 数字(Number)

    Python 数字(Number) Python 数字数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变数字数据类型的值,将重新分配内存空间. 以下实例在变量赋值时 Number 对象 ...

  9. Java将byte[]和int的互相转换

    /** * 将整数转换为byte数组并指定长度 * @param a 整数 * @param length 指定长度 * @return */ public static byte[] intToBy ...

  10. R语言画点状误差线

    现在项目需要R语言做几个线性拟合,画一些点图,突然需要画误差线,网上找了下,可以用代码实现..效果如下 xx1<-c(xxxxxx,xxxx,xxxxx) yy1<-c(xxxxxx,xx ...