Boosting
Boosting is a greedy alogrithm. The alogrithm works by applying the weak learner sequentially to weighted version of the data, where more weight is given to examples that were misclassified by earlier rounds. Breiman( 1998) showed that boosting can be interperted as a form of gradient descent in function space. This view was then extended in (Friedman et al. 2000), who showed how boosting could be extended to handle a variety of loss functions , including for regression, robust regression, Poission regression, etc.
1. Forward stagewise additive modeling:
The goal of boosting is to solve the following optimization problem:
\(\min_{f} \sum_{i=1}^N L(y_i, f(x_i))\)
and \(L(y,\hat{y})\) is some loss function, and f is assumed to be an (adaptive basis function model) ABM.

the picture above portries some possible loss function and their corresponding algrithm names.
2. The procedures of forward stagewise algorithm:
Input: training data: \( T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\); Loss function \(L(y,f(x))\); basis function set: \(b\{x;r\}\).
Output: addative model: f(x):
(1) Initialize \(f_0(x)\).
(2) for m in 1,2,...,M:
(a): minimize loss function:
\((\beta_m,r_m) = argmin_{\beta,r} \sum_{i = 1}^{N}L(y_i,f_{m-1}(x_i) + \beta b(x_i;r))\);
then we got the parameters: \(\beta_m,r_m\).
(b): Update:
\(f_m(x) = f_{m-1} (x) = \beta_m b_(x;r_m)\)
(3) additive model:
\(f(x) = f_M(x) = \sum_{m =1}^N \beta_m b(x;r_m)\)
Reference:
1. Machine learning a probabilistic perspective 553-563.
2. The elements of statistical learning
3. http://blog.csdn.net/dark_scope/article/details/24863289
Boosting的更多相关文章
- boosting、adaboost
1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获 ...
- [Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模 ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- PRML读书会第十四章 Combining Models(committees,Boosting,AdaBoost,决策树,条件混合模型)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式 ...
- 【译】用boosting构建简单的目标分类器
用boosting构建简单的目标分类器 原文 boosting提供了一个简单的框架,用来构建鲁棒性的目标检测算法.这里提供了必要的函数来实现它:100% MATLAB实现,作为教学工具希望让它简单易得 ...
- Gradient Boosting Decision Tree学习
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...
- 统计学习方法笔记 -- Boosting方法
AdaBoost算法 基本思想是,对于一个复杂的问题,单独用一个分类算法判断比较困难,那么我们就用一组分类器来进行综合判断,得到结果,"三个臭皮匠顶一个诸葛亮" 专业的说法, 强可 ...
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- bootstrap, boosting, bagging 几种方法的联系
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...
- A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...
随机推荐
- postgreSql——时区问题
timestamptz.timestamp SELECT ts AT TIME ZONE 'UTC' FROM ( VALUES (timestamptz '2012-03-05 17:00:00+0 ...
- Shell: nohup守护进程化
如果想在终端会话中启动shell脚本,然后让脚本一直以后台模式运行,直到其完成,即使你退出了终端会话,可以使用nohup命令实现.感觉nohup就是将一个进程初始化为一个守护进程. nohup命令运行 ...
- Wordpress搭建
Install Environment apt install apache2 php mysql-server apt install php-mysql php-fpm Config mysql ...
- HDU 3635 Dragon Balls(带权并查集)
http://acm.hdu.edu.cn/showproblem.php?pid=3635 题意: 有n颗龙珠和n座城市,一开始第i颗龙珠就位于第i座城市,现在有2种操作,第一种操作是将x龙珠所在城 ...
- 返回Json格式结果
static string ReturnData(int resultCode, string resultMessage = "", string resultData = &q ...
- WebStorm破解方法
http://www.jianshu.com/p/85266fa16639 http://idea.lanyus.com/ webstorm 入门指南 破解方法 1. 下载的WebStorm http ...
- JavaScript 局部刷新
JavaScript局部刷新具体代码展示如下 1. #tabList代表需要刷新的元素的对象 2. 第二个#tabList 如果后面有第三个元素,那么后面需要加>*符号,如果不加,容易造成C ...
- PostgreSQL安装及使用教程一(exe安装方式)
下载安装 百度搜索PostgreSQL,进入官网,选择相应版本的图形化安装程序(BigSQL)安装即可 连接数据库 对数据库操作有两种方式,一种是通过命令行工具psql,另一种是通过图形化界面pgAd ...
- 《剑指offer》第六十七题(把字符串转换成整数)
// 面试题67:把字符串转换成整数 // 题目:请你写一个函数StrToInt,实现把字符串转换成整数这个功能.当然,不 // 能使用atoi或者其他类似的库函数. #include <ios ...
- eclipse中怎么调出左边项目列表,解决方法:主界面的最上面一栏的Window--ShowView--Project Explorer
主界面的最上面一栏的Window--ShowView--Project Explorer