You are given a tree consisting of n vertices. A number is written on each vertex; the number on vertex i is equal to ai

.

Let's denote the function g(x,y)

as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex x to vertex y (including these two vertices). Also let's denote dist(x,y) as the number of vertices on the simple path between vertices x and y, including the endpoints. dist(x,x)=1 for every vertex x

.

Your task is calculate the maximum value of dist(x,y)

among such pairs of vertices that g(x,y)>1

.

Input

The first line contains one integer n

— the number of vertices (1≤n≤2⋅105)

.

The second line contains n

integers a1, a2, ..., an (1≤ai≤2⋅105)

— the numbers written on vertices.

Then n−1

lines follow, each containing two integers x and y (1≤x,y≤n,x≠y) denoting an edge connecting vertex x with vertex y

. It is guaranteed that these edges form a tree.

Output

If there is no pair of vertices x,y

such that g(x,y)>1, print 0. Otherwise print the maximum value of dist(x,y)

among such pairs.

Examples

Input
3
2 3 4
1 2
2 3
Output
1
Input
3
2 3 4
1 3
2 3
Output
2
Input
3
1 1 1
1 2
2 3
Output
0

题意:让你求最长的路径长度,满足路上gcd不为1;

思路:分治的做法比较暴力,但是时限比较长,有板子就直接上了。 由于gcd具有收敛性,路径上的gcd不会太多,而且越远回越接近1,我们记录每一个gcd的最深的位置即可。  (我用的以前的板子,所以用了map,此题的数据量可以不用map

还有一个思路,我们枚举素因子,然后把含有这个素因子的点标记出来,求他们的最远距离,更新答案。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
const int inf=0x7FFFFFFF;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cnt,N,sn;
int a[maxn],sz[maxn],son[maxn],vis[maxn],root,res;
int dep[maxn];
ll ans[maxn];
map<int,int>mp,tp;
map<int,int>::iterator it1,it2;
inline void read(int &x) {
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c<=''&&c>='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v){
Next[++cnt]=Laxt[u];
Laxt[u]=cnt; To[cnt]=v;
}
void getroot(int u,int fa) //找重心
{
sz[u]=; son[u]=;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa&&!vis[To[i]]){
getroot(To[i],u);
sz[u]+=sz[To[i]];
son[u]=max(son[u],sz[To[i]]);
}
}
son[u]=max(son[u],sn-son[u]);
if(root==||son[root]>son[u]) root=u;
}
void getans(int u,int fa,int num) //对于当前链产生的新GCD
{
dep[u]=dep[fa]+; tp[num]=max(tp[num],dep[u]);
for(int i=Laxt[u];i;i=Next[i]){
if(!vis[To[i]]&&To[i]!=fa){
getans(To[i],u,__gcd(num,a[To[i]]));
}
}
}
void solve(int u) //解决以u为根的子问题
{
mp.clear(); mp[a[u]]=; ans[a[u]]++; dep[u]=;
for(int i=Laxt[u];i;i=Next[i])
if(!vis[To[i]]) {
tp.clear(); getans(To[i],u,__gcd(a[u],a[To[i]]));
for(it1=mp.begin();it1!=mp.end();it1++)
for(it2=tp.begin();it2!=tp.end();it2++){
int g=__gcd((*it1).first,(*it2).first);
if(g>) res=max(res,(*it1).second+(*it2).second-);
}
for(it2=tp.begin();it2!=tp.end();it2++)
mp[(*it2).first]=max((*it2).second,mp[(*it2).first]);
}
}
void dfs(int u) //分治
{
vis[u]=; solve(u);
for(int i=Laxt[u];i;i=Next[i]){
if(vis[To[i]]) continue;
root=; sn=sz[To[i]];
getroot(To[i],); dfs(root);
}
}
int main()
{
read(N); int u,v,Max=;
for(int i=;i<=N;i++) read(a[i]),Max=max(Max,a[i]);
for(int i=;i<N;i++) {
read(u);read(v);
add(u,v); add(v,u);
}
if(Max>) res=;
root=; sn=N; getroot(,); dfs(root);
printf("%d\n",res);
return ;
}

CodeForces - 1101D:GCD Counting (树分治)的更多相关文章

  1. CF EDU 1101D GCD Counting 树形DP + 质因子分解

    CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...

  2. Sereja and Brackets CodeForces - 380C (线段树+分治思路)

    Sereja and Brackets 题目链接: CodeForces - 380C Sereja has a bracket sequence s1, s2, ..., *s**n, or, in ...

  3. Ultimate Weirdness of an Array CodeForces - 671C (gcd,线段树)

    大意: 定义一个数列的特征值为两个数gcd的最大值, $f(l,r)$表示数列删除区间$[l,r]$的元素后剩余元素的特征值, 求$\sum_{i=1}^n\sum_{j=i}^n{f(i,j)}$ ...

  4. CF1101D GCD Counting 点分治+质因数分解

    题意:求最长的树上路径点值的 $gcd$ 不为 $1$ 的长度. 由于只要求 $gcd$ 不为一,所以只要 $gcd$ 是一个大于等于 $2$ 的质数的倍数就可以了. 而我们发现 $2\times 1 ...

  5. CodeForces - 990G GCD Counting

    Discription You are given a tree consisting of nn vertices. A number is written on each vertex; the ...

  6. CF990G GCD Counting 点分治+容斥+暴力

    只想出来 $O(nlogn\times 160)$ 的复杂度,没想到还能过~ Code: #include <cstdio> #include <vector> #includ ...

  7. Codeforces 437D The Child and Zoo - 树分治 - 贪心 - 并查集 - 最大生成树

    Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The ...

  8. Educational Codeforces Round 45 (Rated for Div. 2) G - GCD Counting

    G - GCD Counting 思路:我猜测了一下gcd的个数不会很多,然后我就用dfs回溯的时候用map暴力合并就好啦. 终判被卡了MLE.....  需要每次清空一下子树的map... #inc ...

  9. CF1101D GCD Counting

    题目地址:CF1101D GCD Counting zz的我比赛时以为是树剖或者点分治然后果断放弃了 这道题不能顺着做,而应该从答案入手反着想 由于一个数的质因子实在太少了,因此首先找到每个点的点权的 ...

  10. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

随机推荐

  1. 微信小程序 HMACSHA256 哈希加密

    下载CryptoJS, 增加红色的这句 module.exports = CryptoJS /* CryptoJS code.google.com/p/crypto-js (c) 2009-2012 ...

  2. summary_16th Nov, 2018

    一. 编程语言的分类: a. 机器语言:直接使用二进制指令去编写程序,必须考虑硬件细节 b:汇编语言:用英文标签取代二进制指令去编写程序,必须考虑硬件细节 c:高级语言:用人类能理解的方式编写程序,通 ...

  3. 使用Postman在Chrome下进行rest请求测试

    1.首先下载postman,我已经下载好,放在云盘里了. http://pan.baidu.com/s/1c1YoGKS 密码 dgfw 2.打开Chrome,点击更多工具->扩展程序~打开. ...

  4. vsCode快捷键设置

    // 快捷键设置 keyiing.json // 将键绑定放入此文件中以覆盖默认值 [     /* // 转换大写     {         "key" : "ctr ...

  5. git merge branch

    git branch   look at your branches git branch newbranch git checkout newbrach do something git check ...

  6. linux文件管理 文件操作

    文件操作 pwd 命令 该命令的英文解释为print working direction(打印工作目录).输入pwd命令,Linux输出当前目录. cd 命令 用来改变所在目录 cd / 转到根目录 ...

  7. xpath & <tr><td><br>

    python : 3.6 lxml : 4.2.1 from lxml.html import etree test_html = ''' <!DOCTYPE html PUBLIC " ...

  8. el表达式原样输出,不被解析

    今天遇到了,在jar包都有的前提下EL表达式原样输出,不被解析,原因是: page指令中确少 isELIgnored="false" 加上就好了 <%@ page langu ...

  9. set循环遍历删除特定元素

    使用Iterator迭代器 public class Demo { public static void main(String[] args) { Set<Object> obj = n ...

  10. 《Python》线程池、携程

    一.线程池(concurrent.futures模块) #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 P ...