题目描述

顺序和逆序读起来完全一样的串叫做回文串。比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同)。

输入长度为 n的串 S ,求 S的最长双回文子串 T ,即可将 T 分为两部分 X, Y,( ∣X∣,∣Y∣≥1|X|,|Y|≥1∣X∣,∣Y∣≥1 )且 X 和 Y 都是回文串。

输入输出格式

输入格式:

一行由小写英文字母组成的字符串 S 。

输出格式:

一行一个整数,表示最长双回文子串的长度。

输入输出样例

输入样例#1:

baacaabbacabb
输出样例#1:

12

说明

【样例说明】

从第二个字符开始的字符串aacaabbacabb可分为aacaabbacabb两部分,且两者都是回文串。

对于100%的数据, 2≤∣S∣≤105

Solution:

  本题$zyys$啊!~

  很容易想到$manacher$,于是先打个板子看看,处理出以$i$为中心的最长回文半径$p[i]$后,就断思路了。

  我首先想到的是,在每次更新$p[i]$后,分别处理出以$i$为中心的半径$p[i]$内,每个位置为开头和结尾的最长回文子串长度($manacher$结束后直接枚举断点就可以得到答案),但是这样强行又将复杂度拉到了$O(n^2)$。于是,开始断线~

  后面看看巨佬们的思路,豁然**,我是真的蠢啊~

  其实,将我开始的思路修改一下即可:

  我们维护最长回文半径$p[i]$的同时,再分别维护两个东西,以$i$为结尾的最长回文子串的长度$ll[i]$,和以$i$为开头的最长回文子串的长度$rr[i]$。

  那么很显然,因为以$i$为中心的最长回文子串长度为$p[i]-1$,所以每次更新$p[i]$后,我们只需处理出当前这个回文子串的左右边界(中间的每个点的$ll[i],rr[i]$可以在$manacher$结束后$O(n)$处理出),则$ll[i+p[i]-1]=max(ll[i+p[i]-1],p[i]-1)$(更新以$i+p[i]-1$为结尾的最长回文长度),同理$rr[i-p[i]+1]=max(rr[i-p[i]+1],p[i]-1)$。

  跑完$manacher$后,我们$O(n)$递推出每个$#$为断点的$ll[i]$和$rr[i]$,其中$rr[i]$因为是$i$结尾的回文长度,所以直接顺推,每往后移一位,最长回文子串长度$-2$,于是$rr[i]=max(rr[i],rr[i-2]-2)$($i-2$是上一个$#$位置),同理$ll[i]$直接逆推,类似地$ll[i]=max(ll[i],ll[i+2]-2)$。

  最后枚举每个$#$为断点,更新$ans$就$OK$了。

代码:

#include<bits/stdc++.h>
#define For(i,a,b,c) for(int (i)=(a);(i)<=(b);(i)+=(c))
#define Bor(i,a,b,c) for(int (i)=(b);(i)>=(a);(i)-=(c))
#define Min(a,b) ((a)>(b)?(b):(a))
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=;
int p[N],ll[N],ans,rr[N],mx,id,cnt;
char s[N],t[N];
int main(){
scanf("%s",t);
int len=strlen(t);
s[++cnt]='$',s[++cnt]='#';
For(i,,len-,)s[++cnt]=t[i],s[++cnt]='#';
s[++cnt]='\0';
For(i,,cnt,){
if(i<mx)p[i]=Min(p[id*-i],mx-i);
else p[i]=;
while(s[i-p[i]]==s[i+p[i]])p[i]++;
if(mx<i+p[i])id=i,mx=i+p[i];
ll[i+p[i]-]=Max(ll[i+p[i]-],p[i]-);
rr[i-p[i]+]=Max(rr[i-p[i]+],p[i]-);
}
For(i,,cnt,)rr[i]=Max(rr[i],rr[i-]-);
Bor(i,,cnt,)ll[i]=Max(ll[i],ll[i+]-);
For(i,,cnt,)if(rr[i]&&ll[i])ans=Max(ans,ll[i]+rr[i]);
cout<<ans;
return ;
}

P4555 最长双回文串的更多相关文章

  1. P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...

  2. 洛谷 P4555 [国家集训队]最长双回文串 解题报告

    P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...

  3. Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串

    题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...

  4. 【洛谷】P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...

  5. BZOJ 2565: 最长双回文串 [Manacher]

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1842  Solved: 935[Submit][Status][Discu ...

  6. 【BZOJ2565】最长双回文串(回文树)

    [BZOJ2565]最长双回文串(回文树) 题面 BZOJ 题解 枚举断点\(i\) 显然的,我们要求的就是以\(i\)结尾的最长回文后缀的长度 再加上以\(i+1\)开头的最长回文前缀的长度 至于最 ...

  7. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  8. Tsinsen 最长双回文串

    求最长双回文串,正反建回文树求最大. 题目链接:http://www.tsinsen.com/ViewGProblem.page?gpid=A1280 By:大奕哥 #include<bits/ ...

  9. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

随机推荐

  1. 巧妙使用JQuery Clone 添加多行数据,并更新到数据库

    WEB代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="BatchAdd. ...

  2. 用gulp把less文件编译成css文件

    第一次使用gulp构建工具,使用gulp将.less文件编译成.css文件并输出.根据视频做了笔记.提供新手和自己以后做参考. HTML文件 <!DOCTYPE html> <htm ...

  3. vue 自定义动态弹框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. django-redis缓存记录

    对于站点缓存,我们使用redis这款key-value数据库.Redis有着更为复杂的数据结构并且提供对他们的原子性操作,这是一个不同于其他数据库的进化路径.Redis的数据类型都是基于基本数据结构的 ...

  5. 阻止touchslider事件冒泡,防止左右滑动时出发全局滑动事件

    最近适用mui开发一个项目,全局有个侧滑菜单offCanvasSideScroll,首页用了一个touchslider插件来实现行的左右滚动 touchslider的当滚动方向与侧滑菜单滚动方向一致时 ...

  6. wampserver怎么设置外网可访问

    wampserver配置httpd.conf允许外网访问? 在电脑上开启wamp服务后,默认是禁止外部网络访问的,如果您想要同一局域网中的设备能够访问PC上的web项目,则需要对httpd.conf文 ...

  7. BFS:Open and Lock(一个数的逐位变化问题的搜索)

    解体心得: 1.关于定义四维数组的问题,在起初使用时,总是在运行时出错,找了很多方法,最后全部将BFS()部分函数写在主函数中,将四维数组定义在主函数中才解决了问题.运行成功后再次将四维数组定义为全局 ...

  8. 动态规划:HDU1087-Super Jumping! Jumping! Jumping!(最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. 9 RESTful API

    1  RESTful API 2 post创建一个视频 put帖子加精,delete删除 3 自定义状态码 4 5 6 7 8

  10. 【正则】对RegExp执行typeof运算的结果

    对RegExp执行typeof运算的结果并不统一,在有些浏览器中返回“function”,在有些中返回“object”. 谷歌:   火狐     IE:       **