P4555 最长双回文串
题目描述
顺序和逆序读起来完全一样的串叫做回文串。比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同)。
输入长度为 n的串 S ,求 S的最长双回文子串 T ,即可将 T 分为两部分 X, Y,( ∣X∣,∣Y∣≥1|X|,|Y|≥1∣X∣,∣Y∣≥1 )且 X 和 Y 都是回文串。
输入输出格式
输入格式:
一行由小写英文字母组成的字符串 S 。
输出格式:
一行一个整数,表示最长双回文子串的长度。
输入输出样例
baacaabbacabb
12
说明
【样例说明】
从第二个字符开始的字符串aacaabbacabb可分为aacaa与bbacabb两部分,且两者都是回文串。
对于100%的数据, 2≤∣S∣≤105
Solution:
本题$zyys$啊!~
很容易想到$manacher$,于是先打个板子看看,处理出以$i$为中心的最长回文半径$p[i]$后,就断思路了。
我首先想到的是,在每次更新$p[i]$后,分别处理出以$i$为中心的半径$p[i]$内,每个位置为开头和结尾的最长回文子串长度($manacher$结束后直接枚举断点就可以得到答案),但是这样强行又将复杂度拉到了$O(n^2)$。于是,开始断线~
后面看看巨佬们的思路,豁然**,我是真的蠢啊~
其实,将我开始的思路修改一下即可:
我们维护最长回文半径$p[i]$的同时,再分别维护两个东西,以$i$为结尾的最长回文子串的长度$ll[i]$,和以$i$为开头的最长回文子串的长度$rr[i]$。
那么很显然,因为以$i$为中心的最长回文子串长度为$p[i]-1$,所以每次更新$p[i]$后,我们只需处理出当前这个回文子串的左右边界(中间的每个点的$ll[i],rr[i]$可以在$manacher$结束后$O(n)$处理出),则$ll[i+p[i]-1]=max(ll[i+p[i]-1],p[i]-1)$(更新以$i+p[i]-1$为结尾的最长回文长度),同理$rr[i-p[i]+1]=max(rr[i-p[i]+1],p[i]-1)$。
跑完$manacher$后,我们$O(n)$递推出每个$#$为断点的$ll[i]$和$rr[i]$,其中$rr[i]$因为是$i$结尾的回文长度,所以直接顺推,每往后移一位,最长回文子串长度$-2$,于是$rr[i]=max(rr[i],rr[i-2]-2)$($i-2$是上一个$#$位置),同理$ll[i]$直接逆推,类似地$ll[i]=max(ll[i],ll[i+2]-2)$。
最后枚举每个$#$为断点,更新$ans$就$OK$了。
代码:
#include<bits/stdc++.h>
#define For(i,a,b,c) for(int (i)=(a);(i)<=(b);(i)+=(c))
#define Bor(i,a,b,c) for(int (i)=(b);(i)>=(a);(i)-=(c))
#define Min(a,b) ((a)>(b)?(b):(a))
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=;
int p[N],ll[N],ans,rr[N],mx,id,cnt;
char s[N],t[N];
int main(){
scanf("%s",t);
int len=strlen(t);
s[++cnt]='$',s[++cnt]='#';
For(i,,len-,)s[++cnt]=t[i],s[++cnt]='#';
s[++cnt]='\0';
For(i,,cnt,){
if(i<mx)p[i]=Min(p[id*-i],mx-i);
else p[i]=;
while(s[i-p[i]]==s[i+p[i]])p[i]++;
if(mx<i+p[i])id=i,mx=i+p[i];
ll[i+p[i]-]=Max(ll[i+p[i]-],p[i]-);
rr[i-p[i]+]=Max(rr[i-p[i]+],p[i]-);
}
For(i,,cnt,)rr[i]=Max(rr[i],rr[i-]-);
Bor(i,,cnt,)ll[i]=Max(ll[i],ll[i+]-);
For(i,,cnt,)if(rr[i]&&ll[i])ans=Max(ans,ll[i]+rr[i]);
cout<<ans;
return ;
}
P4555 最长双回文串的更多相关文章
- P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...
- 洛谷 P4555 [国家集训队]最长双回文串 解题报告
P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...
- Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串
题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...
- 【洛谷】P4555 [国家集训队]最长双回文串
P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...
- BZOJ 2565: 最长双回文串 [Manacher]
2565: 最长双回文串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1842 Solved: 935[Submit][Status][Discu ...
- 【BZOJ2565】最长双回文串(回文树)
[BZOJ2565]最长双回文串(回文树) 题面 BZOJ 题解 枚举断点\(i\) 显然的,我们要求的就是以\(i\)结尾的最长回文后缀的长度 再加上以\(i+1\)开头的最长回文前缀的长度 至于最 ...
- BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)
BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...
- Tsinsen 最长双回文串
求最长双回文串,正反建回文树求最大. 题目链接:http://www.tsinsen.com/ViewGProblem.page?gpid=A1280 By:大奕哥 #include<bits/ ...
- bzoj 2565: 最长双回文串 manacher算法
2565: 最长双回文串 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...
随机推荐
- 【洛谷5358】[SDOI2019] 快速查询(模拟)
点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...
- 第五章 javascript编程可养成的好习惯
用户点击某个链接时弹出一个新窗口javascript使用window对象的open()方法来创建新的浏览器窗口,这个方法有三个参数:window.open(url,name,features)url: ...
- mahout算法解析
1.下载ubuntu的iso 2.安装虚拟机,vmware,最好英文原版 3.在vm里面安装ubuntu,安装vm tools 4.本地连接设置为共享上网,虚拟机采用NAT,打开ubuntu,自动连接 ...
- python的对数
python的对数 首先要导入 math 模块: import math import numpy as np math.log(8,2),此为以2为底8的对数 等于 math.log2(8); 等于 ...
- Win 无法安装 python 包
Win 上使用 pip install 安装出错 使用 wheel 安装 pip install wheel 下载 编译包 http://www.lfd.uci.edu/~gohlke/pythonl ...
- UOJ#386. 【UNR #3】鸽子固定器(链表)
题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...
- PHP获取接下来一周的日期
//获取接下来一周的日期 function GetWeeks() { $i=0; $weeks=[]; for ($i;$i<=7;$i++){ $month=date('m',time()+8 ...
- Android 性能篇 -- 带你领略Android内存泄漏的前世今生
基础了解 什么是内存泄漏? 内存泄漏是当程序不再使用到的内存时,释放内存失败而产生了无用的内存消耗.内存泄漏并不是指物理上的内存消失,这里的内存泄漏是指由程序分配的内存但是由于程序逻辑错误而导致程序失 ...
- ECMAScript 6入门扩展笔记
字符串扩展 Unicode相关补充 引入"\u{xx}"来表示码点,之前只能表示\u0000-\uffff引入String.fromCodePoint()能正确读取大于uFFFF的 ...
- 力扣题目汇总(丑数,重复N的元素,求众数)
丑数 1.题目描述 编写一个程序判断给定的数是否为丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例 1: 输入: 6 输出: true 解释: 6 = 2 × 3 示例 2: 输入: 8 ...