一. 什么是拷贝构造函数

首先对于普通类型的对象来说,它们之间的复制是很简单的,例如

  1. int a = 100;
  2. int b = a;

而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量。
下面看一个类对象拷贝的简单例子。

 #include <iostream>
using namespace std; class CExample {
private:
 int a;
public:
//构造函数
 CExample(int b)
 { a = b;} //一般函数
 void Show ()
 {
cout<<a<<endl;
}
}; int main()
{
 CExample A();
 CExample B = A; //注意这里的对象初始化要调用拷贝构造函数,而非赋值
  B.Show ();
 return ;
}

运行程序,屏幕输出100。从以上代码的运行结果可以看出,系统为对象 B 分配了内存并完成了与对象 A 的复制过程。就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。

下面举例说明拷贝构造函数的工作过程。

 #include <iostream>
using namespace std; class CExample {
private:
int a;
public:
//构造函数
CExample(int b)
{ a = b;} //拷贝构造函数
CExample(const CExample& C)
{
a = C.a;
} //一般函数
void Show ()
{
cout<<a<<endl;
}
}; int main()
{
CExample A();
CExample B = A; // CExample B(A); 也是一样的
B.Show ();
return ;
}

CExample(const CExample& C) 就是我们自定义的拷贝构造函数。可见,拷贝构造函数是一种特殊的构造函数,函数的名称必须和类名称一致,它必须的一个参数是本类型的一个引用变量

二. 拷贝构造函数的调用时机

在C++中,下面三种对象需要调用拷贝构造函数!
1. 对象以值传递的方式传入函数参数


调用g_Fun()时,会产生以下几个重要步骤:
(1).test对象传入形参时,会先会产生一个临时变量,就叫 C 吧。
(2).然后调用拷贝构造函数把test的值给C。 整个这两个步骤有点像:CExample C(test);
(3).等g_Fun()执行完后, 析构掉 C 对象。

2. 对象以值传递的方式从函数返回

class CExample
{
private:
int a; public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
} //拷贝构造
CExample(const CExample& C)
{
a = C.a;
cout<<"copy"<<endl;
} //析构函数
~CExample()
{
cout<< "delete: "<<a<<endl;
} void Show ()
{
cout<<a<<endl;
}
}; //全局函数,传入的是对象
void g_Fun(CExample C)
{
cout<<"test"<<endl;
} int main()
{
CExample test();
//传入对象
g_Fun(test); return ;
}

当g_Fun()函数执行到return时,会产生以下几个重要步骤:
(1). 先会产生一个临时变量,就叫XXXX吧。
(2). 然后调用拷贝构造函数把temp的值给XXXX。整个这两个步骤有点像:CExample XXXX(temp);
(3). 在函数执行到最后先析构temp局部变量。
(4). 等g_Fun()执行完后再析构掉XXXX对象。

3. 对象需要通过另外一个对象进行初始化;

  1. CExample A(100);  
  2. CExample B = A;   
  3. // CExample B(A);  

后两句都会调用拷贝构造函数。

三. 浅拷贝和深拷贝

1. 默认拷贝构造函数

很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好的进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式:

 Rect::Rect(const Rect& r)
{
width = r.width;
height = r.height;
}

当然,以上代码不用我们编写,编译器会为我们自动生成。但是如果认为这样就可以解决对象的复制问题,那就错了,让我们来考虑以下一段代码:

 class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
}; int Rect::count = ; // 初始化计数器 int main()
{
Rect rect1;
cout<<"The count of Rect: "<<Rect::getCount()<<endl; Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
cout<<"The count of Rect: "<<Rect::getCount()<<endl; return ;
}

  这段代码对前面的类,加入了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反应出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。

说白了,就是拷贝构造函数没有处理静态数据成员。

出现这些问题最根本就在于在复制对象时,计数器没有递增,我们重新编写拷贝构造函数,如下:

 class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
Rect(const Rect& r) // 拷贝构造函数
{
width = r.width;
height = r.height;
count++; // 计数器加1
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
};

2. 浅拷贝

所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑如下一段代码:

 class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int();
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
}; int main()
{
Rect rect1;
Rect rect2(rect1); // 复制对象
return ;
}

在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:

在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:

在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect1.p= rect2.p,也即这两个指针指向了堆里的同一个空间,如下图所示:

当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。

3. 深拷贝

在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:

 class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int();
}
Rect(const Rect& r)
{
width = r.width;
height = r.height;
p = new int; // 为新对象重新动态分配空间
*p = *(r.p);
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
};

此时,在完成对象的复制后,内存的一个大致情况如下:

此时rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有相同的内容,这就是所谓的“深拷贝”。

3. 防止默认拷贝发生

通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象

 // 防止按值传递
class CExample
{
private:
int a; public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
} private:
//拷贝构造,只是声明
CExample(const CExample& C); public:
~CExample()
{
cout<< "delete: "<<a<<endl;
} void Show ()
{
cout<<a<<endl;
}
}; //全局函数
void g_Fun(CExample C)
{
cout<<"test"<<endl;
} int main()
{
CExample test();
//g_Fun(test); 按值传递将出错 return ;
}

四. 拷贝构造函数的几个细节

1. 拷贝构造函数里能调用private成员变量吗?
解答:
这个问题是在网上见的,当时一下子有点晕。其时从名子我们就知道拷贝构造函数其时就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。

2. 以下函数哪个是拷贝构造函数,为什么?

  1. X::X(const X&);
  2. X::X(X);
  3. X::X(X&, int a=1);
  4. X::X(X&, int a=1, int b=2);


解答:对于一个类X, 如果一个构造函数的第一个参数是下列之一:
a) X&
b) const X&
c) volatile X&
d) const volatile X&
且没有其他参数或其他参数都有默认值,那么这个函数是拷贝构造函数.

  1. X::X(const X&);  //是拷贝构造函数
  2. X::X(X&, int=1); //是拷贝构造函数
  3. X::X(X&, int a=1, int b=2); //当然也是拷贝构造函数

3. 一个类中可以存在多于一个的拷贝构造函数吗?
解答:
类中可以存在超过一个拷贝构造函数。

  1. class X {
  2. public:
  3. X(const X&);      // const 的拷贝构造
  4. X(X&);            // 非const的拷贝构造
  5. };

注意,如果一个类中只存在一个参数为 X& 的拷贝构造函数,那么就不能使用const X或volatile X的对象实行拷贝初始化.

  1. class X {
  2. public:
  3. X();
  4. X(X&);
  5. };
  6. const X cx;
  7. X x = cx;    // error

如果一个类中没有定义拷贝构造函数,那么编译器会自动产生一个默认的拷贝构造函数。
这个默认的参数可能为 X::X(const X&)或 X::X(X&),由编译器根据上下文决定选择哪一个。

c++拷贝函数详解(转)的更多相关文章

  1. memset函数详解

    语言中memset函数详解(2011-11-16 21:11:02)转载▼标签: 杂谈 分类: 工具相关  功 能: 将s所指向的某一块内存中的每个字节的内容全部设置为ch指定的ASCII值, 块的大 ...

  2. fork()函数详解

    linux中fork()函数详解(原创!!实例讲解) (转载)    一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程 ...

  3. C++ list容器系列功能函数详解

    C++ list函数详解 首先说下eclipse工具下怎样debug:方法:你先要设置好断点,然后以Debug方式启动你的应用程序,不要用run的方式,当程序运行到你的断点位置时就会停住,也会提示你进 ...

  4. (转)fock函数详解

    转自:http://www.cnblogs.com/bastard/archive/2012/08/31/2664896.html linux中fork()函数详解  一.fork入门知识 一个进程, ...

  5. 【转】linux 中fork()函数详解

    在看多线程的时候看到了这个函数,于是学习了下,下面文章写的通俗易懂,于是就开心的看完了,最后还是很愉快的算出了他最后一个问题. linux 中fork()函数详解 一.fork入门知识 一个进程,包括 ...

  6. 转 C++拷贝构造函数详解

    C++拷贝构造函数详解 一. 什么是拷贝构造函数 首先对于普通类型的对象来说,它们之间的复制是很简单的,例如: int a = 100; int b = a; 而类对象与普通对象不同,类对象内部结构一 ...

  7. 【转载】jQuery.extend 函数详解

    转载自:http://www.cnblogs.com/RascallySnake/archive/2010/05/07/1729563.html jQuery.extend 函数详解 JQuery的e ...

  8. 08--C++拷贝构造函数详解

    C++拷贝构造函数详解 一. 什么是拷贝构造函数 首先对于普通类型的对象来说,它们之间的复制是很简单的,例如: [c-sharp] view plain copy int a = 100; int b ...

  9. 常用socket函数详解

    常用socket函数详解 关于socket函数,每个的意义和基本功能都知道,但每次使用都会去百度,参数到底是什么,返回值代表什么意义,就是说用的少,也记得不够精确.每次都查半天,经常烦恼于此.索性都弄 ...

随机推荐

  1. C++零基础到入门

    (1)C语言概述 (2)编写.运行一个简单的C语言程序 (3)数据类型 (4)运算符和表达式 如果你对C语言一窍不通,那你就好好看这篇文章,我会力争让你真正的做到从零基础到入门,同时这篇文章会让你基本 ...

  2. 笔记11 export to excel

    参考两篇博客:http://blog.csdn.net/zyming0815/article/details/5939104 http://blog.csdn.net/g710710/article/ ...

  3. (全然背包)小P寻宝记——好基友一起走

    题目描写叙述 话说.上次小P到伊利哇呀国旅行得到了一批宝藏.他是相当开心啊.回来就告诉了他的好基友小鑫.于是他们又结伴去伊利哇呀国寻宝. 这次小P的寻宝之路可没有那么的轻松,他们走到了一个森林,小鑫一 ...

  4. Introducing Gradle (Ep 2, Android Studio)

    https://www.youtube.com/watch?v=cD7NPxuuXYY    Introducing Gradle (Ep 2, Android Studio) https://www ...

  5. $modal 参数 以及 使用方法

    $modal是一个可以迅速创建模态窗口的服务,创建部分页,控制器,并关联他们 $modal仅有一个方法open(options) templateUrl:模态窗口的地址 template:用于显示ht ...

  6. mac USB串口工具配置

     安装USB serial 驱动 我的usb serial芯片是 pl2303, 先到官网上下载对应驱动,并安装.安装完成之后会要求重启. http://www.prolific.com.tw/adm ...

  7. C++代码书写模板 -- 如何判断函数类型

    先说一个简单的方案. 经过验证 g++ 和 vs2010 都可以.原理就是利用函数类型可以直接转换成函数指针. template<class T> bool test( T * t ) { ...

  8. 虚拟机和主机ping不通,SQL Server无法远程连接的解决方法

    一.虚拟机网络的配置 这里只列一下自己的配置: 1.编辑---虚拟网络编辑器 进行设置 2.设置对应系统 3.还是Ping不通,最后关闭 虚机内的Windows防火墙,可以Ping通,看来Net模式下 ...

  9. [Phoenix] 七、如何使用自增ID

    摘要: 在传统关系型数据库中设计主键时,自增ID经常被使用.不仅能够保证主键的唯一,同时也能简化业务层实现.Phoenix怎么使用自增ID,是我们这篇文章的重点. 在传统关系型数据库中设计主键时,自增 ...

  10. Composite Pattern

    1.将对象组合成树形结构以表示“部分--整体”的层次结构.组合模式使得用户对单个对象和组合对象的使用具有一致性. 2.Composite 模式结构图 3.实现 #ifndef _COMPONENT_H ...