题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194

如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
int n,lim,l,c[xn],rev[xn];
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd()-;
for(int i=;i<=n;i++)a[n-i].x=rd(),b[i].x=rd();
lim=;
while(lim<=n+n)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=n;i++)c[n-i]=(int)(a[i].x/lim+0.5);
for(int i=;i<=n;i++)printf("%d\n",c[i]);
return ;
}

bzoj 2194 快速傅立叶之二 —— FFT的更多相关文章

  1. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  2. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  3. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  4. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  5. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  6. bzoj 2194: 快速傅立叶之二【NTT】

    看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...

  7. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  8. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  9. 【BZOJ】2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...

随机推荐

  1. 百科知识 ass文件如何打开

    直接拖入视频即可播放 鼠标右键 用记事本打开 也有一些软件支持比如POPSUB(也比较方便调整时间轴) 如果你是说如何加载字幕的话 用VOBSUB是最好的... ASS是视频的字幕,和视频放在同一文件 ...

  2. 微信自带浏览器被输入法阻挡文本框的 jQuery 解决方法 by FungLeo

    微信自带浏览器被输入法阻挡文本框的 jQuery 解决方法 by FungLeo 前言 做好了项目之后,在各种浏览器里面測试,都没有问题.非常高兴,交付后端使用.然而发如今微信自带浏览器里面,却是出现 ...

  3. ARP协议(1)什么是ARP协议

    这是最近在看<TCP/IP具体解释>系列书总结出来的,之后会陆续把其它协议部分分享出来. 我尽量以简单易读.易懂的方式呈现出来,可是,因为文笔和水平有限.有些地方或许存在描写叙述上的不足或 ...

  4. 【每日Scrum】第二天(4.12) TD学生助手Sprint1站立会议

    TD学生助手Sprint1站立会议(4.12) 任务看板 站立会议内容 组员 昨天 今天 困难 签到 刘铸辉 (组长) 做了几个Sqlite编辑事件导入数据库没成功,就编辑图片滑动显示功能 今天学习了 ...

  5. Matlab---傅里叶变换---通俗理解(二)

    1.用Matlab进行傅立叶变换 FFT是离散傅里叶变换的高速算法,能够将一个信号变换到频域.有些信号在时域上是非常难看出什么特征的,可是假设变换到频域之后,就非常easy看出特征了.这就是非常多信号 ...

  6. IDA断点和搜索

    一.断点 调试很重要一点是下断点,看看IDA提供的功能,本来已经和WinDbg一样强了. 官方文档的变化 Edit breakpoint Action name: BreakpointEdit Con ...

  7. 基于bootstrap+MySQL搭建动态网站

    这个只是在上个练习项目中的后台管理项目加入了MySQL,数据不是写死的,而是从数据库中获取到的,获取到数据执行增删改查操作,没什么 计数难度,不做介绍

  8. kubernetes管理之使用yq工具截取属性

    系列目录 前面我们讲解过使用go-template或者jsonpath格式(kubectl get 资源 --output go-tempalte(或jsonpath))来截取属性的值,并且我们比较了 ...

  9. 生产制造追溯系统-通过微信小程序实现移动端报表平台

    前言 前两篇文章主要梳理了一下在生产过程中如何更高效.更稳定的实现条码打印,有不少园子里的朋友私信我,互相讨论了一些技术方面的问题,双方都各有收获,再此感谢博客园提供的这个交流平台,让五湖四海的朋友能 ...

  10. 提高sqlite 的运行性能(转载)

    原文地址: https://blog.devart.com/increasing-sqlite-performance.html One the major issues a developer en ...