解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数......

这道题用莫比乌斯的正向函数表达式理解较容易

此题让自己理解了只要与倍数相关即可用mobius。

此题还需要注意的一点,是平方数只需要反演质数。貌似是常识

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
ll t,n;
inline ll read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
ll x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
}
//莫比乌斯函数线性筛法
const int maxn=+;
bool vis[maxn];
int prime[maxn],mu[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
} bool check(ll x){
ll ans=;
for(ll i=;i*i<=x;i++){
ans+=mu[i]*(x/(i*i));
}
return ans>=n;
} ll erfen(ll l,ll r){
while(l<r){
ll mid=(l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}
return r;
}
int main(){
init_mu();
t=read();
while(t--){
n=read();
printf("%lld\n",erfen(, ));
} }

[bzoj2440]完全平方数(二分+mobius反演)的更多相关文章

  1. BZOJ2440完全平方数(莫比乌斯反演)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  2. [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]

    题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...

  3. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  4. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  5. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  6. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  7. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  8. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  9. Mobius 反演与杜教筛

    积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...

随机推荐

  1. ch.poweredge.ntlmv2-auth

    <dependency> <groupId>ch.poweredge.ntlmv2-auth</groupId> <artifactId>ntlmv2- ...

  2. tcp/ip (网络通讯协议)

    介绍 TCP: 传输控制协议, IP: 网际协议, TCP/IP: 供已连接互联网的计算机之间进行通信的通信协议 在tcp/ip内部 , 包含一系列处理数据通信的协议: tcp.udp.icmp.dh ...

  3. Webpack探索【12】--- externals详解

    本文主要讲externals相关内容. https://segmentfault.com/a/1190000012113011

  4. Linux就该这么学--计划任务服务

    有经验的系统运维工程师能够让系统自动化运行,无需人工的干预就可以让各个服务.命令在指定的时间段运行.停止. 计划任务分为: 一次性计划任务:今晚11:30开启网站服务 长期性计划任务:每周1.3.5的 ...

  5. CUDA: 流

    1. 页锁定主机内存 c库函数malloc()分配标准的,可分页(Pagable)的内存,cudaHostAlloc()分配页锁定的主机内存.页锁定内存也称为固定内存(Pinned Memory)或者 ...

  6. JS性能优化——数据存取

    首先,了解几个概念: 字面量:它只代表自身,不存储在特定的位置.JavaScript中的字面量有:字符串.数字.布尔值.对象.数组.函数.正则,以及特殊的null和undefined值 本地变量:使用 ...

  7. Bootstrap——组件

    1.字体图标 <span class="glyphicon glyphicon-star" aria-hidden="true"></span ...

  8. ansible3

    一.setup模块 ansible的setup模块主要用来收集信息,查看参数: [root@localhost ~]# ansible-doc -s setup # 查看参数,部分参数如下: filt ...

  9. Laravel5.5执行表迁移命令出现表为空的解决方案

    今天在使用一个第三方包 laravel-admin 时,出现了这样的错误:SQLSTATE[42000]: Syntax error or access violation: 1103 Incorre ...

  10. u盘安装debian 7(Wheezy) stabe

    将一个闲置u盘插入电脑usb口.从http://mirrors.sohu.com/debian-cd/7.4.0/amd64/iso-dvd/debian-7.4.0-amd64-DVD-1.iso ...