解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数......

这道题用莫比乌斯的正向函数表达式理解较容易

此题让自己理解了只要与倍数相关即可用mobius。

此题还需要注意的一点,是平方数只需要反演质数。貌似是常识

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
ll t,n;
inline ll read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
ll x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
}
//莫比乌斯函数线性筛法
const int maxn=+;
bool vis[maxn];
int prime[maxn],mu[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
} bool check(ll x){
ll ans=;
for(ll i=;i*i<=x;i++){
ans+=mu[i]*(x/(i*i));
}
return ans>=n;
} ll erfen(ll l,ll r){
while(l<r){
ll mid=(l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}
return r;
}
int main(){
init_mu();
t=read();
while(t--){
n=read();
printf("%lld\n",erfen(, ));
} }

[bzoj2440]完全平方数(二分+mobius反演)的更多相关文章

  1. BZOJ2440完全平方数(莫比乌斯反演)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  2. [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]

    题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...

  3. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  4. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  5. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  6. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  7. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  8. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  9. Mobius 反演与杜教筛

    积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...

随机推荐

  1. WPF实现ScrollViewer滚动到指定控件处

    在前端 UI 开发中,有时,我们会遇到这样的需求:在一个 ScrollViewer 中有很多内容,而我们需要实现在执行某个操作后能够定位到其中指定的控件处:这很像在 HTML 页面中点击一个链接后定位 ...

  2. cmake使用第三方库

    1 link_directories和target_link_libraries 1.1 link_directories 告诉linker去这些目录去找library. 1.2 target_lin ...

  3. CrystalReport runtime的下载地址

    SAP网站的东西实在太多了,找个CrytalReport都费劲.13.*版的可以通过下面的地址下载: SAP Crystal Reports, developer version for Micros ...

  4. php微信支付测试开发(流程已通)

    必要条件: appid //公众号后台开发者中心获得(和邮件内的一样)   mchid//邮件内获得  key//商户后台自己设置  appsecret //公众号开发者中心获得 两个证书文件,邮件内 ...

  5. 【python】python调用shell方法

    在python脚本中,有时候需要调用shell获取一下信息,下面介绍两种常用的调用方法. 第一种,os.system() 这个函数获取的是命令的执行状态,比如 >>> import ...

  6. Java基础教程:对象比较排序

    Java基础教程:对象比较排序 转载请标明出处:http://blog.csdn.net/wangtaocsdn/article/details/71500500 有时候需要对对象列表或数组进行排序, ...

  7. HDU - 1241 Oil Deposits 【DFS】

    题目链接 https://cn.vjudge.net/contest/65959#problem/L 题意 @表示油田 如果 @@是连在一起的 可以八个方向相连 那么它们就是 一块油田 要找出 一共有 ...

  8. oracle-数据库的各种-锁-详解

    数据库是一个多用户使用的共享资源.当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况.若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性. 如果是单用户的 ...

  9. VS调试的问题

    调试Vs,使用本地IIS也不行,使用外部服务器也不行,最后运行VS2013以管理员身份就可以了

  10. python下setuptools安装

      python下的setuptools带有一个easy_install的工具,在安装python的每三方模块.工具时很有用,也很方便.安装setuptools前先安装pip,请参见<pytho ...