[bzoj2440]完全平方数(二分+mobius反演)
解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数......
这道题用莫比乌斯的正向函数表达式理解较容易
此题让自己理解了只要与倍数相关即可用mobius。
此题还需要注意的一点,是平方数只需要反演质数。貌似是常识
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
ll t,n;
inline ll read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
ll x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
}
//莫比乌斯函数线性筛法
const int maxn=+;
bool vis[maxn];
int prime[maxn],mu[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
} bool check(ll x){
ll ans=;
for(ll i=;i*i<=x;i++){
ans+=mu[i]*(x/(i*i));
}
return ans>=n;
} ll erfen(ll l,ll r){
while(l<r){
ll mid=(l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}
return r;
}
int main(){
init_mu();
t=read();
while(t--){
n=read();
printf("%lld\n",erfen(, ));
} }
[bzoj2440]完全平方数(二分+mobius反演)的更多相关文章
- BZOJ2440完全平方数(莫比乌斯反演)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- bzoj2440 完全平方数 莫比乌斯值+容斥+二分
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...
- SPOJ PGCD (mobius反演 + 分块)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...
- 关于Mobius反演
欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...
- mobius反演讲解
mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...
- [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛
Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- Mobius 反演与杜教筛
积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...
随机推荐
- ASP.NET动态网站制作(6)-- JS(1)
前言:JS的第一节课,在Visual Studio 2013中编写及运行.新建项目->Web->ASP.NET Web应用程序->Empty,打开后在项目下添加新建css文件夹和js ...
- python 基础 9.0 安装MySQL-python-1.2.5客户端
一. 安装客户端 python 标准数据库接口为Python DB-API,Python DB-API 为开发人员提供了数据应用编程接口.参考地址:https://wiki.python.or ...
- dubbo介绍及其使用案例
dubbo介绍及其使用案例 1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果 ...
- 在非OnPaint里应该使用ClientDC来画图
import wx class Example(wx.Frame): def __init__(self, parent, title): super(Example, self).__init__( ...
- html乱码怎问题
大家会不会常常遇到中文乱码的情况?html中文乱码问题该怎么调? <标签名 lang=lang> - 指定语言种类 lang 属性能够指定标签范围内的元素的语言种类. 英语lang=&qu ...
- myeclipse安装tomactserver图解
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/shaozucheng/article/details/36673227 选择标题栏中 Window- ...
- JETSON TK1 ~ 控制GPIO
首先建立个存放gpio代码的文件夹,CD到该文件夹. git clone git://github.com/derekmolloy/boneDeviceTree/ 解压后会出现几个文件 GPIO文件夹 ...
- CentOS 7 设置自定义开机启动,添加自定义系统服务
详细文档,http://www.linuxidc.com/Linux/2015-04/115937.htm 摘自: http://www.centoscn.com/CentOS/config/2015 ...
- python的模块导入问题
以下内容参考:http://www.xinxingjiaocheng.com/online/item/7/89 1.给模块起个别名 如果一个模块的名字很长很长,就像这样comput_the_value ...
- Luke 5—— 可视化 Lucene 索引查看工具,可以查看ES的索引
Luke 5 发布,可视化 Lucene 索引查看工具 oschina 发布于2015年08月31日 这是一个主要版本,该版本支持 Lucene 5.2.0. 它支持 elasticsearch ...