洛谷 2668&2540 斗地主——搜索+贪心+dp
题目:https://www.luogu.org/problemnew/show/P2540
发现如果没有顺子,剩下的可以贪心。所以搜索顺子怎么出,然后贪心。
这样只能过不加强版。原因是贪心的时候难以弄3=1+2。3应该是 3带* 还是拆开让4带上?
如这个数据(×后面是个数):3×3,4×1,6×4,7×3,9×1,10×2,11×1,12×4,13×3
正解应该是把一个3拆成1+2,然后两次4带2,两次3带2。但贪心似乎做不了。
所以应该dp!记录1,2,3,4,王各有几个,就能把“拆”体现在状态转移里了。
自己以“还剩几张牌”为阶段,“拆”就是同层转移了;所以需要注意枚举的顺序,保证先同层转移到自己,再从自己转移。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int T,n,a[N][M],nm[],dp[N][N>>][N/][N>>][],fg,ans;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void Mn(int &x,int y){x=min(x,y);}
void calc(int cr)
{
memset(dp,0x3f,sizeof dp); memset(nm,,sizeof nm);
for(int i=;i<=;i++)nm[a[cr][i]]++;
dp[nm[]][nm[]][nm[]][nm[]][fg]=;
int lm1=n,lm2=n>>,lm3=n/,lm4=(n>>);
for(int sm=nm[]+(nm[]<<)+nm[]*+(nm[]<<)+fg;sm>=;sm--)
for(int l=lm4;l>=;l--)
for(int k=lm3;k>=;k--)
for(int j=lm2;j>=;j--)
for(int t=;t<=;t++)
{
int i=sm-(j<<)-k*-(l<<)-t; if(i<)continue;
int d=dp[i][j][k][l][t]; if(d>n-cr)continue;
if(l)Mn(dp[i+][j][k+][l-][t],d);//4=1+3
if(l)Mn(dp[i][j+][k][l-][t],d);//4=2+2
if(k)Mn(dp[i+][j+][k-][l][t],d);//3=1+2
if(j)Mn(dp[i+][j-][k][l][t],d);//2=1+1 d++;
if(l&&i>=)Mn(dp[i-][j][k][l-][t],d);
if(l&&i&&t)Mn(dp[i-][j][k][l-][t-],d);
if(l&&t>=)Mn(dp[i][j][k][l-][],d);
if(l&&j>=)Mn(dp[i][j-][k][l-][t],d); if(k&&j)Mn(dp[i][j-][k-][l][t],d);
if(k&&i)Mn(dp[i-][j][k-][l][t],d);
if(k&&t)Mn(dp[i][j][k-][l][t-],d); if(i)Mn(dp[i-][j][k][l][t],d);
if(j)Mn(dp[i][j-][k][l][t],d);
if(k)Mn(dp[i][j][k-][l][t],d);
if(l)Mn(dp[i][j][k][l-][t],d);
if(t==)Mn(dp[i][j][k][l][t-],d);
if(t==)Mn(dp[i][j][k][l][],d);
}
ans=min(ans,cr+dp[][][][][]);
}
void solve(int cr)
{
if(cr>ans)return;
memcpy(a[cr],a[cr-],sizeof a[cr-]);
for(int i=,j;i<=;i++)
if(a[cr][i]>=&&a[cr][i+]>=)
{
a[cr][i]-=;
for(j=i+;j<=&&a[cr][j]>=;j++)
a[cr][j]-=;
for(j--;j>=i+;j--) solve(cr+),a[cr][j]+=;
a[cr][i]+=;
}
for(int i=,j;i<=;i++)
if(a[cr][i]>=&&a[cr][i+]>=&&a[cr][i+]>=)
{
a[cr][i]-=;a[cr][i+]-=;
for(j=i+;j<=&&a[cr][j]>=;j++)
a[cr][j]-=;
for(j--;j>=i+;j--) solve(cr+),a[cr][j]+=;
a[cr][i+]+=;a[cr][i]+=;
}
for(int i=,j;i<=;i++)
if(a[cr][i]&&a[cr][i+]&&a[cr][i+]&&a[cr][i+]&&a[cr][i+])
{
a[cr][i]--;a[cr][i+]--;a[cr][i+]--;a[cr][i+]--;
for(j=i+;j<=&&a[cr][j];j++)
a[cr][j]--;
for(j--;j>=i+;j--) solve(cr+),a[cr][j]++;
a[cr][i+]++;a[cr][i+]++;a[cr][i+]++;a[cr][i]++;
}
calc(cr-);
}
int main()
{
T=rdn(); n=rdn();
while(T--)
{
ans=N;
memset(a[],,sizeof a[]); fg=;//!
for(int i=,u,v;i<=n;i++)
{
u=rdn(); v=rdn();
if(u)a[][u<=?u+:u-]++;
else fg++;
}
solve();
printf("%d\n",ans);
}
return ;
}
洛谷 2668&2540 斗地主——搜索+贪心+dp的更多相关文章
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P1282 多米诺骨牌 (DP)
洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 洛谷P1063 能量项链(区间DP)(环形DP)
To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...
- 洛谷P1074 靶形数独 [搜索]
题目传送门 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z 博士拿出了 ...
- 【洛谷 P1667】 数列 (贪心)
题目链接 对于一个区间\([x,y]\),设这个区间的总和为\(S\) 那么我们在前缀和(设为\(sum[i]\))的意义上考虑到原操作其实就是\(sum[x−1]+=S\) , \(sum[x]+S ...
随机推荐
- select中分割多组option
<optgroup style="color:gray; font-style:normal" label="——雪佛兰(五菱)——"></o ...
- openCV—Python(1)——初始化环境
本系列博客主要參考自--Adrian Rosebrock:<Practical Python and OpenCV: An Introductory,Example Driven Guide t ...
- (利用DOM)在新打开的页面点击关闭当前浏览器窗口
1.在开发过程中我们前端的用户体验中有时候会要求点击一个按钮,关闭当前浏览器窗口,用HTML DOM就可做到 2.注意:本次写法要求在新窗口中关闭.target="_blank" ...
- 【每日Scrum】第七天(4.28)Sprint2总结性会议
本次会议主要是演示了一下本组项目的各项功能,每个人负责那一块儿功能由本人来负责说明和演示,确定alpha版本的发布时间,并且分派了各组员的文档负责情况,上图是会议记录,下面我详细介绍一下我组分派情况: ...
- [概率dp] hdu 5378 Leader in Tree Land
题意: 给你一颗以1位根节点的树.我们定义对于每一个子树,节点权值最大的权值记为这个子树的权值,为你将1~n放到这个树里 满足最大权值仅仅有k个的组合数是多少. 思路: 我们能够知道以每一个节点为子树 ...
- ok6410[001] Ubuntu 16.04[64bit]嵌入式交叉编译环境arm-linux-gcc搭建过程图解
开发PC:Ubuntu16.04.1 开发板:OK6410[飞凌公司出品] 目标:通过GPIO点亮LED ----------------------------------------------- ...
- 【iOS开发-79】利用Modal方式实现控制器之间的跳转
利用Modal方法.事实上就是以下两个方法的运用. Modal方式的切换效果是从底部呈现. -(void)clickModal{ WPViewController *wp=[[WPViewContro ...
- Oracle 一行拆分为多行
测试数据: CREATE TABLE t (str VARCHAR2(30)); INSERT INTO t VALUES ( 'X,Y,Z' ); INSERT INTO t VALUES ( 'X ...
- SAM4E单片机之旅——4、LED闪烁之PWM
两个LED灯虽然可以闪了,但是总是需要CPU的参与.现在尝试使用一种更为自动化的方法:让脉宽调制(PWM)控制器输出具有一定周期和占空比的方波,以此控制LED灯的亮灭. 一.实现思路 依然使用蓝色和琥 ...
- Boosting AdaBoosting Algorithm
http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf Consider MIT ...