「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp
题目描述
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
输入输出格式
输入格式:
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
输出格式:
Line 1: The maximum revenue FJ can achieve by selling the treats
输入输出样例
说明
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题解
区间dp。
设f[l][r]为还剩l到r的时的最大收益。
转移方程:
j=i+l;
f[i][j]=max(f[i-1][j]+val[i-1]*(n-l+1),f[i][j+1]+val[j+1]*(n-l+1));
也就是f[l][r]是由f[l-1][r]或f[l][r+1]转移而来。
/*
qwerta
P2858 [USACO06FEB]奶牛零食Treats for the Cows
Accepted
100
代码 C++,0.59KB
提交时间 2018-09-16 20:01:06
耗时/内存
129ms, 23280KB
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int v[];
long long f[][];
int main()
{
//freopen("a.in","r",stdin);
int n;
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&v[i]);
for(int l=n-;l>=;--l)
for(int i=;i+l<=n;++i)
{
int j=i+l;
f[i][j]=max(f[i-][j]+(n-l-)*v[i-],f[i][j+]+(n-l-)*v[j+]);
}
long long ans=;
for(int i=;i<=n;++i)
ans=max(ans,f[i][i]+n*v[i]);
cout<<ans;
return ;
}
「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp的更多相关文章
- [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)
传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...
- P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows区间dp,级像矩阵取数, f[i][i+l]=max(f[i+1][i+l]+a[i]*(m-l),f[i][i+l- ...
- bzoj1652 / P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows 区间dp 设$f[l][r]$为取区间$[l,r]$的最优解,蓝后倒着推 $f[l][r]=max(f[l+1][r ...
- AC日记——[USACO06FEB]奶牛零食Treats for the Cows 洛谷 P2858
[USACO06FEB]奶牛零食Treats for the Cows 思路: 区间DP: 代码: #include <bits/stdc++.h> using namespace std ...
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解
P2858 [USACO06FEB]奶牛零食Treats for the Cows 题目描述 FJ has purchased N (1 <= N <= 2000) yummy treat ...
- 区间DP【p2858】[USACO06FEB]奶牛零食Treats for the Cows
Description 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望 ...
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows
题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...
- Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925
题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...
- [USACO] 奶牛零食 Treats for the Cows
题目描述 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售 ...
随机推荐
- C#使用CurrentUICulture切换语言
1. 创建2个窗口 2. 窗口1属性Localizable设置为True,Language选择英语(美国) 然后把窗口1中控件的Text由中文编辑成英文,Form2一样设置. 此时,Form1 ...
- project管理之makefile与自己主动创建makefile文件过程
(风雪之隅 http://www.laruence.com/2009/11/18/1154.html) Linux Makefile自己主动编译和链接使用的环境 想知道到Linux Makefile系 ...
- SQL中Inserted 和Deleted表 以及触发Trigger
什么是Inserted 和Deleted表 他们有什么用 trigger 的简单实用 1.什么是Inserted 和Deleted表 当插入数据的时候,其实是同时向目的表 和inserted表中插入数 ...
- 百度地图 创建 自定义控件(vue)
1.组件代码 Bmap.vue <!-- 离线地图 组件 --> <template> <div id="map" :style="styl ...
- vue2.0 + vux (二)Footer组件
1.Footer组件 Footer.vue <!-- 底部 footer --> <template> <div> <tabbar> <!-- 综 ...
- ftp的实现
ftp.h #define BUFSIZE 512#define CMDSIZE 64#define ARGSIZE 64#define PASSIVE_ON 0x1 struct ftpcmd{ c ...
- hdu 5316 Magician 线段树
链接:http://acm.hdu.edu.cn/showproblem.php? pid=5316 Magician Time Limit: 18000/9000 MS (Java/Others) ...
- PHP获取IP
<?php $iipp = $_SERVER["REMOTE_ADDR"]; echo $iipp ; ?>
- RabbitMQ 内存和磁盘警告
内存和磁盘警告 有两种情况下,Rabbit MQ会停止读取客户端的连接socket,为了防止crash崩溃,这两种情况是: 内存使用达到配置值 磁盘空间下降到配置值下 在这两种情况下,服务器会临时阻塞 ...
- IOS之禁用UIWebView的默认交互行为
本文转载至 http://my.oschina.net/hmj/blog/111344 UIKit提供UIWebView组件,允许开发者在App中嵌入Web页面.通过UIWebView组件 ...