Discription

There are well-known formulas: . Also mathematicians found similar formulas for higher degrees.

Find the value of the sum  modulo 109 + 7 (so you should find the remainder after dividing the answer by the value 109 + 7).

Input

The only line contains two integers n, k (1 ≤ n ≤ 109, 0 ≤ k ≤ 106).

Output

Print the only integer a — the remainder after dividing the value of the sum by the value 109 + 7.

Example

Input
4 1
Output
10
Input
4 2
Output
30
Input
4 3
Output
100
Input
4 0
Output
4

拉格朗日差值裸题。。。
为什么我以前都用高斯消元做自然幂数和2333333
拉格朗日差值的构造原理和中国剩余定理类似,这里就不在赘述,网上也有很多讲的。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1000010;
const int ha=1000000007;
int jc[maxn+5],TT,l;
int n,k,ans=0,base; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} inline void init(){
jc[0]=1;
for(int i=1;i<=maxn;i++) jc[i]=jc[i-1]*(ll)i%ha;
l=k+2,base=1;
} inline void solve(){
if(n<=l){
for(int i=1;i<=n;i++) ans=add(ans,ksm(i,k));
}
else{
for(int i=1;i<=l;i++) base=base*(ll)(n-i)%ha;
for(int i=1,now;i<=l;i++){
TT=add(TT,ksm(i,k));
now=base*(ll)ksm(n-i,ha-2)%ha*(ll)ksm(jc[i-1],ha-2)%ha*(ll)ksm(jc[l-i],ha-2)%ha;
if((l-i)&1) now=now*(ll)(ha-1)%ha;
ans=add(ans,TT*(ll)now%ha);
}
}
} int main(){
scanf("%d%d",&n,&k);
init();
solve();
printf("%d\n",ans);
return 0;
}

  

 

Codeforces 622F The Sum of the k-th Powers的更多相关文章

  1. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

  2. Codeforces 622F The Sum of the k-th Powers(数论)

    题目链接 The Sum of the k-th Powers 其实我也不懂为什么这么做的……看了无数题解觉得好厉害哇…… #include <bits/stdc++.h> using n ...

  3. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

  4. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  5. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  6. [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  7. Codeforces 631E Product Sum 斜率优化

    我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移.对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优. 我们设最优值为val,   val = max(a[ j ] ...

  8. LeetCode862. Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  9. leetcode 862 shorest subarray with sum at least K

    https://leetcode.com/problems/shortest-subarray-with-sum-at-least-k/ 首先回顾一下求max子数组的值的方法是:记录一个前缀min值, ...

随机推荐

  1. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph(有源上下界最大流 模板)

    关于有源上下界最大流: https://blog.csdn.net/regina8023/article/details/45815023 #include<cstdio> #includ ...

  2. CodeForces 519E 树形DP A and B and Lecture Rooms

    给出一棵树,有若干次询问,每次询问距两个点u, v距离相等的点的个数. 情况还挺多的,少侠不妨去看官方题解.^_^ #include <iostream> #include <cst ...

  3. UVa 1407 树形背包 Caves

    这道题可以和POJ 2486 树形背包DP Apple Tree比较着来做. 参考题解 #include <iostream> #include <cstdio> #inclu ...

  4. loj2275 「JXOI2017」颜色

    枚举右端点,然后看左端点合法情况. 先预处理每个颜色 \(i\) 的最大出现位置 \(max_i\) 和最小出现位置 \(min_i\).对于枚举右端点在一个位置 \(i\),凡是 \(max_k & ...

  5. Mime类型与文件后缀对照表及探测文件MIME的方法

    说明:刚刚写了一篇<IHttpHandler的妙用(2):防盗链!我的资源只有我的用户才能下载>的文章,网址:http://blog.csdn.net/zhoufoxcn/archive/ ...

  6. day04_08 while循环02

    练习题: 1.输出九九乘法表 2.使用#号输出一个长方形,用户可以指定宽和高,如果长为3,高为4,则输出一个 横着有3个#号,竖着有4个#号 的长方形. 3.如何输出一个如下的直角三角形,用户指定输出 ...

  7. 使用mysql监视器即命令行下的mysql

    命令行下登录mysql 首先必须在alias下有设置mysql, 我的mysql安装的位置在/usr/local/mysql 于是做了一个别名: alias mysql='/usr/local/mys ...

  8. springboot添加外部jar包及打包

    项目中除了从pom中添加依赖包,还可以添加本地的jar包,怎么做呢? 1.在src下新建目录lib,将jar包添加到lib中 2.在pom文件里添加配置以下属性,就可以使用jar包了 <depe ...

  9. CentOS 6.3下安装腾达USB无线网卡遇到的问题及解决方法

    前言:centos 6.3 下,安装腾达W311M型号Usb无线网卡的步骤.究竟折腾及同事的先前帮助,后来搞定. centos6.3 为64位.安装步骤及顺序: 1.在当前版本下安装W311M usb ...

  10. hdu6038[找规律+循环节] 2017多校1

    /*hdu6038[找规律+循环节] 2017多校1*/ #include<bits/stdc++.h> using namespace std; typedef long long LL ...