HDU 1999 不可摸数【类似筛法求真因子和】
不可摸数
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15591 Accepted Submission(s): 4077
数m,s(m)都不等于n,则称n为不可摸数.
2
5
8
yes
no
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
#include<map>
#include<sstream>
#include<queue>
#include<cmath>
#include<list>
#include<vector>
#include<string>
using namespace std;
#define long long ll
const double PI = acos(-1.0);
const double eps = 1e-;
const int inf = 0x3f3f3f3f;
const int N = ;
int n, m, tot;
int a[]={};
int r[], c[];
int x, y, pr, pc;
int ok(int n)
{
int sum = ;
for(int i= ;i<n; i++)
{
if(n % i == )
{
sum += i;
}
}
return sum;
} int main()
{ int t, f = ;
cin >> t;
while(t--)
{
//f = 0;
cin >> n;
int i = ;
while(i++ <= )
{
if(ok(i) == n)
{
f = ; break;
}
}
printf("%s\n",f?"no":"yes");
}
return ;
}
蒻数据下的无趣暴力
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
#include<map>
#include<sstream>
#include<queue>
#include<cmath>
#include<list>
#include<vector>
#include<string>
using namespace std;
#define long long ll
const double PI = acos(-1.0);
const double eps = 1e-;
const int inf = 0x3f3f3f3f;
const int N = ;
int n, m, tot;
int a[N];
int mp[N];
int x, y, pr, pc; void init()
{
for(int i=; i<=N; i++)
{
for(int j=i+i; j<=N; j+=i)
{
a[j] += i;
}
}
for(int j=; j<=N; j++)
{
if(a[j] <= ) mp[a[j]] = ; //hash标记
}
} int main()
{ int t;
cin >> t;
init();
while(t--)
{
cin >> n;
printf("%s\n",mp[n]?"no":"yes");
}
return ;
}
筛法思想-31MS-ojbk
HDU 1999 不可摸数【类似筛法求真因子和】的更多相关文章
- HDU - 1999 不可摸数,快速求因子和
题意:定义s[m]为m内的因子的和,给定一个n,判断是否有s[m]==n,若没有,则是不可摸数. 思路:首先要打表求出s[m]的值,标记这些出现过的值. 打表求因子和: for(int i=1;i&l ...
- hdu 1999 不可摸数 水题。
不可摸数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU 1999 不可摸数
/* 中文题意: 中文翻译: 题目大意:见红字(例如以下) 解题思路:打表,将每一个数的合数之和存在一个数组之中 难点具体解释:用两个for循环写的,第二个for循环主要是解释两个数相乘不超过这个最大 ...
- hdu 1999 不可摸数 筛选素数 两次打表
不可摸数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1999 不可摸数 (模拟)
题目链接 Problem Description s(n)是正整数n的真因子之和,即小于n且整除n的因子和.例如s(12)=1+2+3+4+6=16.如果任何数m,s(m)都不等于n,则称n为不可摸数 ...
- 不可摸数 【杭电-HDOJ-1999】 附题
/* hdu 1999 不可摸数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...
- 2015 HDU 多校联赛 5317 RGCDQ 筛法求解
2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目 http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...
- HDOJ-1999 不可摸数
不可摸数 转自:http://www.cnblogs.com/dongsheng/archive/2012/08/18/2645594.html Time Limit: 2000/1000 MS (J ...
随机推荐
- Fibonacci again and again HDU - 1848
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)=2; F(n)=F(n-1)+F(n-2)(n>=3); 所以,1, ...
- P1309 瑞士轮
题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...
- Apache虚拟主机测试
一.虚拟机主机简介 部署多个站点,每个站点,希望用不同的域名和站点目录,或者是不同的端口,或不同的ip,就需要虚拟主机功能.简单的说一个http服务要配置多个站点,就需要虚拟主机.(一句话一个http ...
- HDU 5739 Fantasia 双连通分量 树形DP
题意: 给出一个无向图,每个顶点有一个权值\(w\),一个连通分量的权值为各个顶点的权值的乘积,一个图的权值为所有连通分量权值之和. 设删除顶点\(i\)后的图\(G_i\)的权值为\(z_i\),求 ...
- eclipse 插件,直接打开文件路径
https://github.com/samsonw/OpenExplorer/downloads 22k的小插件,意义却重大.下载之后,放到plugins里面.
- mysql之面试问题总结
问题1.char 与varchar的区别? varchar是变长而char的长度是固定的.如果你的内容是固定的大小,char性能更好. char[4] 与varchar[4] 存储字母a a占一个 ...
- Three Steps to Migrate Group Policy Between Active Directory Domains or Forests Using PowerShell
Three Steps Ahead Have you ever wished that you had three legs? Imagine how much faster you could ru ...
- Python数据结构之列表、元组及字典
一位大牛Niklaus Wirth曾有一本书,名为<Algorithms+Data Structures=Programs>,翻译过来也就是算法+数据结构=程序.而本文就是介绍一下Pyth ...
- vim中插入递增数
假设生成0-9的递增数 1.插入数字1,yy复制,9p 2.输入命令 let i= | g//s//\=i/ | let i=i+1 3.结果:
- sqlserver 表值函数
一.单语句表值函数 ALTER function [dbo].[uf_get_jxc_da_sum](@dt char(8),@dt2 char(8)) RETURNS table as return ...