SPOJ 20713 DIVCNT2 - Counting Divisors (square)
DIVCNT2 - Counting Divisors (square)
Let \sigma_0(n)σ0(n) be the number of positive divisors of nn.
For example, \sigma_0(1) = 1σ0(1)=1, \sigma_0(2) = 2σ0(2)=2 and \sigma_0(6) = 4σ0(6)=4.
LetS_2(n) = \sum _{i=1}^n \sigma_0(i^2).S2(n)=i=1∑nσ0(i2).
Given NN, find S_2(N)S2(N).
Input
First line contains TT (1 \le T \le 100001≤T≤10000), the number of test cases.
Each of the next TT lines contains a single integer NN. (1 \le N \le 10^{12}1≤N≤1012)
Output
For each number NN, output a single line containing S_2(N)S2(N).
Example
Input
5
1
2
3
10
100
Output
1
4
7
48
1194
Explanation for Input
- S_2(3) = \sigma_0(1^2) + \sigma_0(2^2) + \sigma_0(3^2) = 1 + 3 + 3 = 7S2(3)=σ0(12)+σ0(22)+σ0(32)=1+3+3=7
Information
There are 6 Input files.
- Input #1: 1 \le N \le 100001≤N≤10000, TL = 1s.
- Input #2: 1 \le T \le 800,\ 1 \le N \le 10^{8}1≤T≤800, 1≤N≤108, TL = 20s.
- Input #3: 1 \le T \le 200,\ 1 \le N \le 10^{9}1≤T≤200, 1≤N≤109, TL = 20s.
- Input #4: 1 \le T \le 40,\ 1 \le N \le 10^{10}1≤T≤40, 1≤N≤1010, TL = 20s.
- Input #5: 1 \le T \le 10,\ 1 \le N \le 10^{11}1≤T≤10, 1≤N≤1011, TL = 20s.
- Input #6: T = 1,\ 1 \le N \le 10^{12}T=1, 1≤N≤1012, TL = 20s.
My C++ solution runs in 5.3 sec. (total time)
Source Limit is 6 KB.
很迷的函数题。
如何求 d(i^2)?
d(i^2)= (2*a1+1)(2*a2+1)(2*a3+1)...(2*ak+1)
我们考虑一下选哪些质因子的集合,上式
=Σ2^|S| *π a[i] ,i属于S
=Σ(p|i) 2^w(p)。
其中w(x)为x的质因子数。
然后发现2^w(x)=Σ(i|x) μ^2(i)
所以ANS= Σμ^2(i) *Σd(j) ,其中1<=i<=n,1<=j<=(n/i)。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int zs[10000005],t=0,T,sq[50000005];
int miu[50000005],low[50000005],maxn;
bool v[50000005];
ll d[50000005],n; inline void init(){
miu[1]=1,d[1]=1,low[1]=1;
for(int i=2;i<=maxn;i++){
if(!v[i]) zs[++t]=i,miu[i]=-1,d[i]=2,low[i]=i;
for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){
v[u]=1;
if(!(i%zs[j])){
low[u]=low[i]*zs[j];
if(low[i]==i) d[u]=d[i]+1;
else d[u]=d[low[u]]*d[i/low[i]];
break;
} low[u]=zs[j];
d[u]=d[i]<<1;
miu[u]=-miu[i];
}
} for(int i=1;i<=maxn;i++) d[i]+=d[i-1];
for(int i=1;i<=maxn;i++) sq[i]=sq[i-1]+miu[i]*miu[i];
} inline ll getsq(ll x){
if(x<=maxn) return sq[x]; ll an=0;
for(int i=1;i*(ll)i<=x;i++){
an+=miu[i]*(x/(i*(ll)i));
}
return an;
} inline ll getd(ll x){
if(x<=maxn) return d[x]; ll an=0;
for(ll i=1,j,now;i<=x;i=j+1){
now=x/i,j=x/now;
an+=(j-i+1)*now;
}
return an;
} inline ll query(ll x){
ll an=0;
for(ll i=1,j,now;i<=x;i=j+1){
now=x/i,j=x/now;
an+=(getsq(j)-getsq(i-1))*getd(now);
}
return an;
} int main(){
scanf("%d",&T);
if(T>800) maxn=1000000;
else maxn=50000000;
init();
while(T--){
scanf("%lld",&n);
printf("%lld\n",query(n));
}
return 0;
}
SPOJ 20713 DIVCNT2 - Counting Divisors (square)的更多相关文章
- [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0(n) be the number of positive diviso ...
- SPOJ : DIVCNT2 - Counting Divisors (square)
设 \[f(n)=\sum_{d|n}\mu^2(d)\] 则 \[\begin{eqnarray*}\sigma_0(n^2)&=&\sum_{d|n}f(d)\\ans&= ...
- SP20173 DIVCNT2 - Counting Divisors (square)
Refer 主要思路参考了 Command_block 的题解. Description 给定 \(n\)(\(n\le 10^{10}\)),求 \[\sum_{i=1}^n\sigma_0(i^2 ...
- DIVCNT2&&3 - Counting Divisors
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...
- SPOJDIVCNT2: Counting Divisors(莫比乌斯反演)
http://acm.tzc.edu.cn/acmhome/vProblemList.do?method=problemdetail&oj=SPOJ&pid=DIVCNT2 给出n求 ...
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors 筛法
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...
随机推荐
- VBA连接MySQL数据库以及ODBC的配置(ODBC版本和MySQL版本如果不匹配会出现驱动和应用程序的错误)
db_connected = False '获取数据库连接设置dsn_name = Trim(Worksheets("加载策略").Cells(2, 5).Value) ---- ...
- 用go和zk实现一个简单的分布式server
golang的zk客户端 最近打算写个简单的配置中心,考虑到实现便捷性,语言选择了go,由于其中计划用到zk,就调研了下golang的zk客户端,并实现了个简单的分布式server.最终找到了两个,地 ...
- TCP/IP网络编程之基于UDP的服务端/客户端
理解UDP 在之前学习TCP的过程中,我们还了解了TCP/IP协议栈.在四层TCP/IP模型中,传输层分为TCP和UDP这两种.数据交换过程可以分为通过TCP套接字完成的TCP方式和通过UDP套接字完 ...
- SSRS 制作报表时报错: 超时时间已到。在操作完成之前超时时间已过或服务器未响应。
转载注明出处,原文地址:http://www.cnblogs.com/zzry/p/5718739.html 在用ssrs 制作报表时报如下错误 错误信息截图: 看到如上错误第一个想到的解决方法就是 ...
- APK无源码使用Robotium简单总结
1.使用re-sign.jar对待测包进行重签名,并记录下包名和主Activity名. 2.在Eclipse中点击File-New-Other 选择Android下的Android Test Proj ...
- CSU-2116 Polyline Simplification
CSU-2116 Polyline Simplification Description Mapping applications often represent the boundaries of ...
- LeetCode661图片平滑器
题目描述:包含整数的二维矩阵 M 表示一个图片的灰度.你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个, ...
- order by 对null的处理
[Oracle 结论] order by colum asc 时,null默认被放在最后order by colum desc 时,null默认被放在最前nulls first 时,强制null放在最 ...
- POJ 1990:MooFest(树状数组)
题目大意:有n头牛,第i头牛声调为v[i],坐标为x[i],任意两值牛i,j沟通所需的花费为abs(x[i]-x[j])*max(v[i],v[j]),求所有牛两两沟通的花费. 分析: 我们将奶牛按声 ...
- Rust学习资源和路线
Rust学习资源和路线 来源 https://rust-lang-cn.org/article/23 学习资源 The Rust Programming Language 堪称Rust的"T ...