【BZOJ4908】[BeiJing2017]开车

Description

你有n辆车,分别a1, a2, ..., an位置和n个加油站,分别在b1, b2, ... ,bn 。每个加油站只能支持一辆车的加油,所以你要把这些车开到不同的加油站加油。一个车从x位置开到y位置的代价为 |x-y| ,问如何安排车辆,使得代价之和最小。同时你有q个操作,每次操作会修改第i辆车的位置到x,你要回答每次修改操作之后最优安排方案的总代价。

Input

第一行一个正整数n,接下来一行n个整数a1, a2, ...,an,接下来一行n个整数b1, b2,... ,bn。
接下来一行一个正整数q,表示操作的个数。
接下来q行,每行有两个整数i(1 ≤ i ≤ n)和x,表示将i这辆车开到x位置的操作。
1 ≤ n, q ≤ 5 * 10^4,所有的车和加油站的范围一直在0到10^9之间。

Output

共q+1行,第一行表示一开始的最优代价。接下来q行,第i行表示操作i之后的最优代价。

Sample Input

2
1 2
3 4
1
1 3

Sample Output

4
2
【样例解释】
一开始将第一辆车开到位置4,将第二辆车开到位置3,代价为 |4-1|+|3-2|=4。
修改后第一辆车的位置变成3,代价为 |3-3|+|4-2|=2。

题解:首先不考虑修改操作,最优方案一定是:将车和加油栈按坐标排序,第i辆车去第i个加油站。那么答案如何表示?一种神奇的方法就是:将车看成+1,加油站看成-1,求前缀和s[i],ans=∑|s[i]|*(pos[i+1]-pos[i])。

那么如何维护ans和s[i]呢?考虑分块。修改小块时可以暴力维护,修改整块时,假设要将当前块内的所有s[i]++,那么我们先给整块打标记,然后ans+=(所有s[i]>=0的)(pos[i+1]-pos[i])-(所有s[i]<0的)(pos[i+1]-pos[i])。那么就在修改小块时,维护一下有多少个s[i]<=j就行了。

细节:

1.将打标记和前缀和结合起来比较麻烦,我们可以令一个块的标记=这个块之前所有元素的前缀和,然后令s[i]=当前块中的前缀和。那么一个元素的真正前缀和就是:标记+s。

2.求有多少个s[i]<=j可以用基数排序。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=150009;
typedef long long ll;
int n,m,nm,B;
ll ans;
int pos[maxn],s[maxn],v[maxn],q1[maxn],q2[maxn],p[500][1000],ts[500],sum[500];
ll ref[maxn],st[500][1000];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
struct node
{
int val,org;
}num[maxn];
bool cmp(node a,node b)
{
return a.val<b.val;
}
void tsort(int x)
{
int i;
for(i=0;i<=2*B;i++) st[x][i]=0;
for(i=x*B;i<x*B+B;i++) st[x][s[i]]+=ref[i+1]-ref[i];
for(i=1;i<=2*B;i++) st[x][i]+=st[x][i-1];
}
ll z(ll x)
{
return x>0?x:-x;
}
int main()
{
n=rd();
int i,j,a,b,c,d,e;
ll tmp;
for(i=1;i<=n;i++) num[i].org=i,num[i].val=rd();
for(i=n+1;i<=2*n;i++) num[i].org=i,num[i].val=rd();
m=rd();
for(i=n+n+1;i<=n+n+m;i++) num[i].org=i,q1[i-n-n]=rd(),num[i].val=rd();
sort(num+1,num+n+n+m+1,cmp);
num[0].val=-1<<30;
for(i=1;i<=n+n+m;i++)
{
if(num[i].val>num[i-1].val) ref[nm++]=num[i].val;
q2[num[i].org]=nm-1;
}
B=ceil(sqrt(nm));
for(i=1;i<=n;i++) v[q2[i]]++,pos[i]=q2[i];
for(i=n+1;i<=2*n;i++) v[q2[i]]--;
for(i=0;i<nm;i++)
{
if(i%B==0)
{
if(i) ts[i/B]=ts[i/B-1]+s[i-1]-B;
s[i]=B+v[i];
}
else s[i]=s[i-1]+v[i];
if(s[i]+ts[i/B]!=B)
{
tmp=z(s[i]+ts[i/B]-B)*(ref[i+1]-ref[i]);
ans+=tmp,sum[i/B]+=tmp;
}
}
ref[nm]=ref[nm-1];
for(i=0;i*B<nm;i++) tsort(i);
printf("%lld\n",ans);
for(i=1;i<=m;i++)
{
a=pos[q1[i]],b=q2[i+n+n],e=-1,v[a]--,v[b]++,pos[q1[i]]=b;
if(a>b) swap(a,b),e=1;
c=a/B,d=b/B;
ans-=sum[c],sum[c]=0;
for(j=c*B;j<c*B+B&&j<nm;j++)
{
if(j==c*B) s[j]=B+v[j];
else s[j]=s[j-1]+v[j];
if(s[j]+ts[c]!=B)
{
tmp=z(s[j]-B+ts[c])*(ref[j+1]-ref[j]);
ans+=tmp,sum[c]+=tmp;
}
}
tsort(c);
if(c==d)
{
printf("%lld\n",ans);
continue;
}
ts[d]+=e,ans-=sum[d],sum[d]=0;
for(j=d*B;j<d*B+B&&j<nm;j++)
{
if(j==d*B) s[j]=B+v[j];
else s[j]=s[j-1]+v[j];
if(s[j]+ts[d]!=B)
{
tmp=z(s[j]-B+ts[d])*(ref[j+1]-ref[j]);
ans+=tmp,sum[d]+=tmp;
}
}
tsort(d);
for(j=c+1;j<d;j++)
{
if(e==1)
{
tmp=st[j][B*2]-((B-ts[j]-1>=0)?(2*st[j][B-ts[j]-1]):0);
ans+=tmp,sum[j]+=tmp,ts[j]++;
}
else
{
tmp=-st[j][B*2]+((B-ts[j]>=0)?(2*st[j][B-ts[j]]):0);
ans+=tmp,sum[j]+=tmp,ts[j]--;
}
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ4908】[BeiJing2017]开车 分块的更多相关文章

  1. [bzoj4908][BeiJing2017]开车

    来自FallDream的博客,未经允许,请勿转载,谢谢. 你有n辆车,分别a1, a2, ..., an位置和n个加油站,分别在b1, b2, ... ,bn .每个加油站只能支持一辆车的加油,所以你 ...

  2. [BZOJ]4908: [BeiJing2017]开车

    Time Limit: 30 Sec  Memory Limit: 256 MB Description 你有n辆车,分别a1, a2, ..., an位置和n个加油站,分别在b1, b2, ... ...

  3. [BJOI2017]开车

    [BJOI2017]开车 直接做要用栈 修改?难以直接维护 统计边的贡献! len*abs(pre)pre表示前缀car-stop 修改时候,整个区间的pre+1或者-1 分块,块内对pre排序并打标 ...

  4. 【BZOJ4861】[Beijing2017]魔法咒语 矩阵乘法+AC自动机+DP

    [BZOJ4861][Beijing2017]魔法咒语 题意:别看BZ的题面了,去看LOJ的题面吧~ 题解:显然,数据范围明显的分成了两部分:一个是L很小,每个基本词汇长度未知:一个是L很大,每个基本 ...

  5. PHP搭建大文件切割分块上传功能

    背景 在网站开发中,文件上传是很常见的一个功能.相信很多人都会遇到这种情况,想传一个文件上去,然后网页提示"该文件过大".因为一般情况下,我们都需要对上传的文件大小做限制,防止出现 ...

  6. POJ2104 K-th Number [分块做法]

    传送:主席树做法http://www.cnblogs.com/candy99/p/6160704.html 做那倒带修改的主席树时就发现分块可以做,然后就试了试 思想和教主的魔法差不多,只不过那个是求 ...

  7. HDU 4467 分块

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4467 题意:给定n个点m条边的无向图,点被染色(黑0/白1),边带边权.然后q个询问.询问分为两种: ...

  8. 2016 ACM/ICPC Asia Regional Dalian Online 1010 Weak Pair dfs序+分块

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  9. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

随机推荐

  1. .NET下XML文件的读写

    一.前言: XML是微软.Net战略的一个重要组成部分,而且它可谓是XML Web服务的基石,所以掌握.Net框架下的XML技术自然显得非常重要了.本文将指导大家如何运用C#语言完成.Net框架下的X ...

  2. PHP中的stristr(),strstr(),strpos()速度比较

    测速代码: <?php function getmicrotime() { list($usec, $sec) = explode(" ",microtime()); ret ...

  3. jquery_final

    第一章 jquery入门 1,jquery的引入 <script type="text/javascript" src="js/jquery-3.3.1.min.j ...

  4. Spring MVC通过Pageable对象和PageableDefault注解获取分页信息(MongoDB通过Pageable来操作分页)

    说明:Pageable同时也能用于操作MongoDB的分页. PageableSpring Data库中定义的一个接口,该接口是所有分页相关信息的一个抽象,通过该接口,我们可以得到和分页相关所有信息( ...

  5. 执行 innerHTML 里的 <script>

    原文:执行 innerHTML 里的 <script> 背景 有时候我们会有把一整段 HTML 动态塞进页面的需求,例如渲染了一个模板,从服务器端获取了一段广告代码等.一般情况下我们使用 ...

  6. pair类型

    pair是一个模板数据类型,其中包含两个数据值,两个数据值可以不同 如 pair<int,string>a(2,"fgh");则a是一个pair类型,它包括两个数据,第 ...

  7. linux调整缓存写入磁盘的时间,减少磁盘爆掉的可能性

    缓存数据存入磁盘的最长时间,如果这段时间写不完,就会报异常停止写,这样缓存数据会不断积累,导致内存爆掉. echo 0 > /proc/sys/kernel/hung_task_timeout_ ...

  8. MFC中 获取新输入编辑框的内容

    //得到原始内容的长度 int len = m_editPoemFileStr.GetLength(); UpdateData(true); //得到新增加的内容 CString  sNewStrin ...

  9. EasyMvc入门教程-基本控件说明(3)时间线

    我们有时候经常看到如下的页面: 或者快递物流信息图标,那么利用EasyMvc如何实现呢?很简单,看下面的例子: @{ var data=new List<TimeLineItem>() { ...

  10. 版本控制工具:SVN和Maven的区别

    一.只有svn的情况 首先考虑没有maven的情况.这样的话,项目组每个开发人员,都需要在本地check out所有的源码. 每次提交之前,需要先更新周边工程的代码.由于工程之间是依赖的,所以很可能需 ...