洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
式子好麻烦orz……大佬好腻害orz->这里
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const int N=1e7+,mod=;
int n,m,vis[N],p[N],cnt,mu[N];ll sum[N];
ll ans,inv2,summ;
void init(int lim){
mu[]=;
for(int i=;i<=lim;++i){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&p[j]*i<=lim;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=lim;++i)
(sum[i]=sum[i-]+1ll*mu[i]*i*i)%=mod;
}
ll calc(int mx,int l){
return (1ll+mx/l)*(mx/l)%mod*inv2%mod;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
int lim;init(lim=min(n,m));
ans=,inv2=(mod+)/,summ=;
for(int d=;d<=lim;++d){
int mxx=n/d,myy=m/d,mn=min(mxx,myy);
summ=;
for(int l=,r;l<=mn;l=r+){
r=min(mxx/(mxx/l),myy/(myy/l));
(summ+=(sum[r]-sum[l-])%mod*calc(mxx,l)%mod*calc(myy,l)%mod)%=mod;
}
(ans+=summ*d)%=mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
return ;
}
洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)的更多相关文章
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
随机推荐
- git设置只允许特定类型的文件
git设置只允许特定类型的文件 # 忽略所有文件 * # 不忽略目录 !*/ # 不忽略文件.gitignore和*.foo !.gitignore !*.foo
- 0-mybatis目录
mybatis 第一天: 对原生态jdbc程序(单独使用jdbc开发)问题总结 框架原理 入门程序 用户的增.删.改.查 开发dao两种方法: 原始dao开发方法(程序需要编写dao接口和dao实现类 ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- Centos6.4 相关配置记录
1.手动开启eth0网卡 在虚拟机里装完CentOS6.4之后,使用NAT模式,输入ifconfig发现没有IP地址,查找了一下资料,原来是: 在CentOS 6.x的版本中,默认网卡是不开启的,需要 ...
- laravel 在apache或nginx的配置
laravel 下载后,如何运行起来呢,根据自己的应用,记录了几个关键点: 1.apache 配置: 打开http.conf文件,将mod_rewrite前面的#去掉(启用重写模块): 2.nginx ...
- MySQL性能优化/调优:默认配置的修改
在这里罗列一下这些配置, 每次新装MySQL的时候, 最好根据实际需要调整一下这些配置: max_connections 最大并发连接数.当MySQL的并发连接达到这个设定值时,新的连接将会被拒绝.当 ...
- Yii2使用Redis - 从安装redis到使用 [ 2.0 版本 ]
Yii2使用Redis - 从安装redis到使用 [ 2.0 版本 ] 一.安装Redis和简单配置 1. 下载Redis安装包 地址:http://redis.io/download , 本文选择 ...
- 【HDU 6126】Give out candies 最小割
题意 有$n$个小朋友,给每个人分$1~m$个糖果,有k个限制 限制形如$(x,y,z)$ 表示第$x$个人分到的糖数减去第$y$个人分到的糖数不大于$z$,给第$i$个人$j$颗糖获 ...
- 《java编程思想》读后笔记:二,吸血鬼数字
书本p75中一道读后练习思考题,题目如下: 吸血鬼数字是指位数为偶数的数字,可以有一对数字相乘得到,而这对数字各包含成绩的一半位数的数字,其中从最初的数字中选取的数字可以任意排序.一两个0结尾的数字是 ...
- AtCoder Regular Contest 073 E:Ball Coloring
题目传送门:https://arc073.contest.atcoder.jp/tasks/arc073_c 题目翻译 给你\(N\)个袋子,每个袋子里有俩白球,白球上写了数字.对于每一个袋子,你需要 ...