图像处理之滤波---滤波在游戏中的应用boxfilter
http://www.yxkfw.com/?p=7810 很有意思的全方位滤波应用
https://developer.nvidia.com/sites/default/files/akamai/gameworks/CN/CGDC14/OpenGL_4.x_for_Mobile_Games_CN.pdf 游戏开发
http://tech.it168.com/a2010/0722/1081/000001081111_all.shtml 医学应用
http://www.ladeng6666.com/blog/2012/11/02/filterdata-to-separate-the-box2d-collision/ 2d碰撞
http://www.pudn.com/downloads317/sourcecode/graph/detail1404298.html 光线跟踪
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
#include "cvaux.h"
#include "math.h"
#ifdef _DEBUG
#pragma comment(lib,"cv200d.lib")
#pragma comment(lib,"cvaux200d.lib")
#pragma comment(lib,"cxcore200d.lib")
#pragma comment(lib,"highgui200d.lib")
#else
#pragma comment(lib,"cv200.lib")
#pragma comment(lib,"cvaux200.lib")
#pragma comment(lib,"cxcore200.lib")
#pragma comment(lib,"highgui200.lib")
#endif
CvMat * cumsum(CvMat *src,int rc)
{
CvMat *Imdst = cvCloneMat(src);
if (rc==1)
{
for(int row=1;row<src->rows;row++)
{
for(int col=0;col<src->cols;col++)
{
cvSetReal2D(Imdst,row,col,cvGetReal2D(Imdst,row-1,col)+cvGetReal2D(Imdst,row,col));
}
}
}
if (rc==2)
{
for(int row=0;row<src->rows;row++)
{
for(int col=1;col<src->cols;col++)
{
cvSetReal2D(Imdst,row,col,cvGetReal2D(Imdst,row,col-1)+cvGetReal2D(Imdst,row,col));
}
}
}
return Imdst;
}
CvMat * boxFilter(CvMat *src,int r)
{
CvMat *Imdst = cvCloneMat(src);
//imCum = cumsum(imSrc, 1);
CvMat *imCum = cumsum(Imdst,1);
//imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
CvMat *subMat = cvCreateMat(r+1,Imdst->cols,CV_32FC1);
cvGetRows(imCum,subMat,r,2*r+1);//前闭后开的区间
for (int row = 0;row<r+1;row++)
{
for(int col = 0;col<Imdst->cols;col++)
{
cvSetReal2D(Imdst,row,col,cvGetReal2D(subMat,row,col));
}
}
cvReleaseMat(&subMat);
//imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
subMat = cvCreateMat(Imdst->rows-2*r,Imdst->cols,CV_32FC1);
cvGetRows(imCum,subMat,2*r+1,Imdst->rows);//这里是不对的第rows行没有被提取
CvMat *subMat2 = cvCreateMat(Imdst->rows-2*r,Imdst->cols,CV_32FC1);
cvGetRows(imCum,subMat2,0,Imdst->rows-2*r-1);
cvSub(subMat,subMat2,subMat2);
for (int row = r+1;row<Imdst->rows-r;row++)
{
for(int col = 0;col<Imdst->cols;col++)
{
cvSetReal2D(Imdst,row,col,cvGetReal2D(subMat2,row-r-1,col));
}
}
cvReleaseMat(&subMat);
cvReleaseMat(&subMat2);
//imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);
subMat = cvCreateMat(r,Imdst->cols,CV_32FC1);
cvGetRows(imCum,subMat,r,2*r);
CvMat *subMatOne = cvCreateMat(1,Imdst->cols,CV_32FC1);
cvRepeat(cvGetRow(imCum,subMatOne,Imdst->rows-1),subMat);
subMat2 = cvCreateMat(r+1,Imdst->cols,CV_32FC1);
cvGetRows(imCum,subMat2,Imdst->rows-2*r-1,Imdst->rows-r-1);
cvSub(subMat,subMat2,subMat2);
for (int row = Imdst->rows-r;row<Imdst->rows;row++)
{
for(int col = 0;col<Imdst->cols;col++)
{
cvSetReal2D(Imdst,row,col,cvGetReal2D(subMat2,row+r-Imdst->rows,col));
}
}
cvReleaseMat(&subMat);
cvReleaseMat(&subMat2);
CvMat *Imdst2= cvCloneMat(Imdst);
//imCum = cumsum(imDst, 2);
imCum = cumsum(Imdst2,2);
//imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
subMat = cvCreateMat(Imdst2->rows,r+1,CV_32FC1);
cvGetCols(imCum,subMat,r,2*r+1);
for(int row=0;row<Imdst2->rows;row++)
{
for(int col=0;col<r+1;col++)
{
cvSetReal2D(Imdst2,row,col,cvGetReal2D(subMat,row,col));
}
}
cvReleaseMat(&subMat);
//imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
subMat = cvCreateMat(Imdst2->rows,Imdst2->cols-2*r-1,CV_32FC1);
subMat2 = cvCreateMat(Imdst2->rows,Imdst2->cols-2*r-1,CV_32FC1);
cvGetCols(imCum,subMat,2*r+1,imCum->cols);
cvGetCols(imCum,subMat2,0,imCum->cols-2*r-1);
cvSub(subMat,subMat2,subMat2);
for(int row=0;row<Imdst2->rows;row++)
{
for(int col=r+1;col<Imdst->cols-r;col++)
{
cvSetReal2D(Imdst2,row,col,cvGetReal2D(subMat2,row,col-r-1));
}
}
cvReleaseMat(&subMat);
cvReleaseMat(&subMat2);
//imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
subMat = cvCreateMat(Imdst2->rows,r,CV_32FC1);
cvGetCols(imCum,subMat,r,2*r);
subMatOne = cvCreateMat(Imdst2->rows,1,CV_32FC1);
cvRepeat(cvGetCol(imCum,subMatOne,Imdst->cols-1),subMat);
subMat2 = cvCreateMat(Imdst2->rows,r,CV_32FC1);
cvGetCols(imCum,subMat2,imCum->cols-2*r-1,imCum->cols-r-1);
cvSub(subMat,subMat2,subMat2);
for(int row=0;row<Imdst2->rows;row++)
{
for(int col=Imdst2->cols-r;col<Imdst->cols;col++)
{
cvSetReal2D(Imdst2,row,col,cvGetReal2D(subMat2,row,col+r-Imdst2->cols));
}
}
cvReleaseMat(&subMat);
cvReleaseMat(&subMat2);
cvReleaseMat(&subMatOne);
return Imdst2;
}
CV_IMPL void
cvSplitssss( const CvMat * srcarr, CvMat* dstarr0, CvMat* dstarr1, CvMat* dstarr2, CvMat* dstarr3 )
{
for(int y=0;y<srcarr->rows;y++)
{
for(int x=0;x<srcarr->cols;x++)
{
cvSetReal2D(dstarr0,y,x,cvGet2D(srcarr,y,x).val[0]/255.00);
if(dstarr1!=NULL&&dstarr2!=NULL)
{
cvSetReal2D(dstarr1,y,x,cvGet2D(srcarr,y,x).val[1]/255.00);
cvSetReal2D(dstarr2,y,x,cvGet2D(srcarr,y,x).val[2]/255.00);
}
}
}
}
CvMat * GuidedFilter_Color(CvMat * I,CvMat *pp,int r, float eps)
{
int height = pp->rows;
int weight = pp->cols;
CvMat *p = cvCreateMat(height,weight,CV_32FC1);
cvSplitssss(pp,p,NULL,NULL,NULL);
CvMat *ones = cvCreateMat(height,weight,CV_32FC1);
cvSet(ones,cvRealScalar(1));
CvMat * N = boxFilter(ones,r);
CvMat * I_b = cvCreateMat(height,weight,CV_32FC1);
CvMat * I_g = cvCreateMat(height,weight,CV_32FC1);
CvMat * I_r = cvCreateMat(height,weight,CV_32FC1);
cvZero(I_r);
cvSplitssss(I,I_r,I_g,I_b,NULL);
CvMat * mean_I_r = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(I_r,r),N,mean_I_r);
CvMat * mean_I_g = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(I_g,r),N,mean_I_g);
CvMat * mean_I_b = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(I_b,r),N,mean_I_b);
CvMat * mean_p = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(p,r),N,mean_p);
CvMat * pr = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_r,p,pr);
CvMat * mean_Ip_r = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(pr,r),N,mean_Ip_r);
CvMat * pg = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_g,p,pg);
CvMat * mean_Ip_g = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(pg,r),N,mean_Ip_g);
CvMat * pb = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_b,p,pb);
CvMat * mean_Ip_b = cvCreateMat(height,weight,CV_32FC1);
cvDiv(boxFilter(pb,r),N,mean_Ip_b);
cvMul(mean_I_r,mean_p,pr);
cvMul(mean_I_g,mean_p,pg);
cvMul(mean_I_b,mean_p,pb);
CvMat * cov_Ip_r = cvCreateMat(height,weight,CV_32FC1);
cvSub(mean_Ip_r,pr,cov_Ip_r);
CvMat * cov_Ip_g = cvCreateMat(height,weight,CV_32FC1);
cvSub(mean_Ip_g,pg,cov_Ip_g);
CvMat * cov_Ip_b = cvCreateMat(height,weight,CV_32FC1);
cvSub(mean_Ip_b,pb,cov_Ip_b);
CvMat * var_I_rr = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_r,I_r,pr);
cvDiv(boxFilter(pr,r),N,var_I_rr);
cvMul(mean_I_r,mean_I_r,pr);
cvSub(var_I_rr,pr,var_I_rr);
CvMat * var_I_rg = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_r,I_g,pr);
cvDiv(boxFilter(pr,r),N,var_I_rg);
cvMul(mean_I_r,mean_I_g,pr);
cvSub(var_I_rg,pr,var_I_rg);
CvMat * var_I_rb = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_r,I_b,pr);
cvDiv(boxFilter(pr,r),N,var_I_rb);
cvMul(mean_I_r,mean_I_b,pr);
cvSub(var_I_rb,pr,var_I_rb);
CvMat * var_I_gg = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_g,I_g,pr);
cvDiv(boxFilter(pr,r),N,var_I_gg);
cvMul(mean_I_g,mean_I_g,pr);
cvSub(var_I_gg,pr,var_I_gg);
CvMat * var_I_gb = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_g,I_b,pr);
cvDiv(boxFilter(pr,r),N,var_I_gb);
cvMul(mean_I_g,mean_I_b,pr);
cvSub(var_I_gb,pr,var_I_gb);
CvMat * var_I_bb = cvCreateMat(height,weight,CV_32FC1);
cvMul(I_b,I_b,pr);
cvDiv(boxFilter(pr,r),N,var_I_bb);
cvMul(mean_I_b,mean_I_b,pr);
cvSub(var_I_bb,pr,var_I_bb);
CvMat * Sigma = cvCreateMat(3,3,CV_32FC1);
CvMat * cov_Ip = cvCreateMat(1,3,CV_32FC1);
CvMat * cov_Ipo = cvCreateMat(1,3,CV_32FC1);
CvMat * SigmaInv = cvCreateMat(3,3,CV_32FC1);
CvMat * a_b = cvCreateMat(height,weight,CV_32FC1);
CvMat * a_g = cvCreateMat(height,weight,CV_32FC1);
CvMat * a_r = cvCreateMat(height,weight,CV_32FC1);
cvZero(SigmaInv);
for(int i=0;i<p->rows;i++)
{
for (int j=0;j<p->cols;j++)
{
cvSetReal2D(Sigma,0,0,cvGetReal2D(var_I_rr,i,j)+2*eps);
cvSetReal2D(Sigma,0,1,cvGetReal2D(var_I_rg,i,j));
cvSetReal2D(Sigma,0,2,cvGetReal2D(var_I_rb,i,j));
cvSetReal2D(Sigma,1,0,cvGetReal2D(var_I_rg,i,j));
cvSetReal2D(Sigma,1,1,cvGetReal2D(var_I_gg,i,j)+2*eps);
cvSetReal2D(Sigma,1,2,cvGetReal2D(var_I_gb,i,j));
cvSetReal2D(Sigma,2,0,cvGetReal2D(var_I_rb,i,j));
cvSetReal2D(Sigma,2,1,cvGetReal2D(var_I_gb,i,j));
cvSetReal2D(Sigma,2,2,cvGetReal2D(var_I_bb,i,j)+2*eps);
cvSetReal2D(cov_Ip,0,0,cvGetReal2D(cov_Ip_r,i,j));
cvSetReal2D(cov_Ip,0,1,cvGetReal2D(cov_Ip_g,i,j));
cvSetReal2D(cov_Ip,0,2,cvGetReal2D(cov_Ip_b,i,j));
cvInvert(Sigma,SigmaInv);
cvMatMulAdd(cov_Ip,SigmaInv,0,cov_Ip);
cvSetReal2D(a_r,i,j,cvGetReal2D(cov_Ip,0,0));
cvSetReal2D(a_g,i,j,cvGetReal2D(cov_Ip,0,1));
cvSetReal2D(a_b,i,j,cvGetReal2D(cov_Ip,0,2));
}
}
cvMul(a_r,mean_I_r,pr);
cvMul(a_g,mean_I_g,pg);
cvMul(a_b,mean_I_b,pb);
cvSub(mean_p,pr,mean_p);
cvSub(mean_p,pg,mean_p);
cvSub(mean_p,pb,mean_p);
cvMul(boxFilter(a_r,r),I_r,I_r);
cvMul(boxFilter(a_g,r),I_g,I_g);
cvMul(boxFilter(a_b,r),I_b,I_b);
cvAdd(I_r,I_g,I_r);
cvAdd(I_r,I_b,I_r);
cvAdd(I_r,boxFilter(mean_p,r),I_r);
cvDiv(I_r,N,I_r);
cvReleaseMat(&a_b);
cvReleaseMat(&a_g);
cvReleaseMat(&a_r);
cvReleaseMat(&SigmaInv);
cvReleaseMat(&cov_Ip);
cvReleaseMat(&Sigma);
cvReleaseMat(&var_I_bb);
cvReleaseMat(&var_I_gb);
cvReleaseMat(&var_I_gg);
cvReleaseMat(&var_I_rb);
cvReleaseMat(&var_I_rg);
cvReleaseMat(&var_I_rr);
cvReleaseMat(&cov_Ip_r);
cvReleaseMat(&cov_Ip_g);
cvReleaseMat(&cov_Ip_b);
cvReleaseMat(&pr);
cvReleaseMat(&pg);
cvReleaseMat(&pb);
cvReleaseMat(&mean_Ip_r);
cvReleaseMat(&mean_Ip_g);
cvReleaseMat(&mean_Ip_b);
cvReleaseMat(&I_g);
cvReleaseMat(&I_b);
cvReleaseMat(&ones);
return I_r;
}
附加比较完整的opecv guidefiltercolor:
http://blog.sina.com.cn/s/blog_98ddf7cb01017m3e.html
图像处理之滤波---滤波在游戏中的应用boxfilter的更多相关文章
- 图像处理之基础---滤波器之高斯低通滤波器3c代码实现yuv,rgb
()高斯理论简介 () ()代码实现 四 使用高斯滤波器进行图像的平滑 ()高斯简介 http://research.microsoft.com/en-us/um/people/kahe/eccv10 ...
- opencv3.2.0图像处理之中值滤波medianBlur API函数
/*中值滤波:medianBlur函数是非线性滤波 函数原型:void medianBlur(inputArray src,OutputArray dst,int ksize) 参数详解: input ...
- OpenCV-跟我学一起学数字图像处理之中值滤波
中值滤波(median filter)在数字图像处理中属于空域平滑滤波的内容(spatial filtering).对消除椒盐噪声具有很好的效果. 数学原理 为了讲述的便捷,我们以灰度图为例.RGB三 ...
- 图像处理之中值滤波介绍及C实现
1 中值滤波概述 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号平滑处理技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤波的基本原理是把数字图像或数字序 ...
- 图像处理之均值滤波介绍及C算法实现
1 均值滤波介绍 滤波是滤波是将信号中特定波段频率滤除的操作,是从含有干扰的接收信号中提取有用信号的一种技术. 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临 ...
- 原创教程“ActionScript3.0游戏中的图像编程”開始连载啦!
经过近两年的不懈努力,笔者的原创教程"ActionScript3游戏中的图像编程"最终在今日划上了完美的句号!这其中记录着笔者多年来在游戏制作,尤其是其中图像处理方 ...
- 【Unity3d游戏开发】游戏中的贝塞尔曲线以及其在Unity中的实现
RT,马三最近在参与一款足球游戏的开发,其中涉及到足球的各种运动轨迹和路径,比如射门的轨迹,高吊球,香蕉球的轨迹.最早的版本中马三是使用物理引擎加力的方式实现的足球各种运动,后来的版本中使用了根据物理 ...
- Unity游戏中使用贝塞尔曲线
孙广东 2015.8.15 比方在3D rpg游戏中.我们想设置弹道,不同的轨迹类型! 目的:这篇文章的主要目的是要给你关于在游戏怎样使用贝塞尔曲线的基本想法. 贝塞尔曲线是最主要的曲线,一般用在 ...
- 地图四叉树一般用在GIS中,在游戏寻路中2D游戏中一般用2维数组就够了
地图四叉树一般用在GIS中,在游戏寻路中2D游戏中一般用2维数组就够了 四叉树对于区域查询,效率比较高. 原理图
随机推荐
- Docker 组件如何协作?
还记得我们运行的第一个容器吗?现在通过它来体会一下 Docker 各个组件是如何协作的. 容器启动过程如下: Docker 客户端执行 docker run 命令. Docker daemon 发现本 ...
- 【Eclipse】Eclipse中tomcat的Server配置(解决修改代码不断的重启服务器)以及设置tomcat文件发布位置与JSP编译位置查看
Eclipse有时候修改一点JS或者JSP都会自动重启,有时候修改完JS或者JSP之后必须重启服务器才生效,下面研究了server的一些选项之后彻底解决了这些问题,下面做记录: 我的 Eclipse ...
- Lua中闭包详解 来自RingOfTheC[ring.of.the.c@gmail.com]
这些东西是平时遇到的, 觉得有一定的价值, 所以记录下来, 以后遇到类似的问题可以查阅, 同时分享出来也能方便需要的人, 转载请注明来自RingOfTheC[ring.of.the.c@gmail.c ...
- MinGW 使用和创建 DLL 应注意的问题
MinGW 是 GCC 的 Windows 版本,稳定版已经到了 4.5.2,功能和性能上很好,感觉不比 Microsoft 自家的 VC 差啊.但是 MinGW 下使用和创建 DLL 倒是要特别注意 ...
- SQLite的sqlite_sequence表
SQLite的sqlite_sequence表 sqlite_sequence表也是SQLite的系统表.该表用来保存其他表的RowID的最大值.数据库被创建时,sqlite_sequence表会 ...
- 济南day2
我好菜啊,绝望啊orzzzzzzz 上午: 上午题解报告 下午 预计100+100+30 实际100+90+0 T2不是我的错,评测机炸了,第一个点无法运行,本机是可以过得 T1 乱搞 T2 前缀和+ ...
- The 2016 ACM-ICPC Asia China-Final Contest Promblem D
显然答案具有单调性,可以二分.问题是 我们二分出一个 堆数,该怎么判定能否达到这个堆数呢? 我们可以很简单的用调整法证明,最底下的一层的冰淇淋肯定是最小的那些,往上叠加的话我们再贪心的让较少的放在较小 ...
- python--文件处理1
1. 读取文件 方法: all_the_text = open('thefile.txt').read() 但是为了安全起见还是给打开的文件对象指定一个名字,这样在完成之后可以迅速关掉,防止无 ...
- uitableview使用reloaddata不管用
原因在于决定row number得array变动后没有再次将其count赋值给numberOfRowsInSection中返回的成员变量.致使没有其作用
- Android gradle 相关配置
有时候我们需要重命名输出apk文件名,在Android studio 3.0以前我们是这样写的: applicationVariants.all { variant -> variant.out ...