题意

$\DeclareMathOperator{\lcm}{lcm}$选 $k$ ($k\le 10$) 个 $1$ 到 $n$($n\le 10^9$)之间的整数(可以相同),使得 $\lcm(a_1, \dots, a_k)$ 最大。

题解

这是 hihoCoder 挑战赛 #6 的 B 题,CLJ(WJMZBMR) 出的。CLJ 的题解:

首先我们注意到,如果你选择了两个不互质的 $a, b$,那么不妨把 $a$ 换成 $a/(a,b)$。显然 LCM 还是不变的。

这意味着存在一组最优解使得所有选择的数都两两互质。

那么我们不妨使用暴搜,首先我们注意到我们至少可以选择比 $n$ 小的最大的 $k$ 个质数来当做初始解。

然后我们从大到小枚举是否使用,搜到 $x$ 时,假如当前最优解是 $ans$, 当前 LCM 是 $w$, 如果还能选择 $t$ 个, 假如 $wx^t \le ans$,那么显然已经无法得出更优的解了,就可以剪枝了。

首先需要指出,上面题解中

如果你选择了两个不互质的数 $a, b$,那么不妨把 $a$ 换成 $a/(a,b)$ 。显然 LCM 还是不变的。

这个结论是错误的,很容易举出反例:$a=4, b=2$,可能是作者笔误。不过,对于不互质的两个数 $a,b$ ,确实存在两个互质的数 $a',b'$ ($a'\le a, b'\le b$),使得 $\lcm(a',b') = \lcm(a,b)$。

写出 $a, b$ 两数的质因子展开式,设

$$

\begin{align}

a = p_1^{i_1} p_2^{i_2}\dots p_n^{i_n} \notag\

b = p_1^{j_1} p_2^{j_2}\dots p_n^{j_n} \notag

\end{align}

$$

在 $a$,$b$ 展开式中,只保留幂次较大的项便得到了 $a'$, $b'$。

至此,我遇到了一个困难:如何求比 $n$($n\le 10^9$)小的最大的 $k$($k\le 10$)个素数?

当然,求出 $k$ 个最大的素数并非我们的最终目的,这样做只是为了得到一个较大的初始解,求出不满 $k$ 个最大的素数也无妨,从而我们可以暴力判断后若干(比如 100)个数。另外,应当能看出初始解是否取一个较大的值,对程序运行时间影响并不大,将其取为 $n$ 甚至 $0$ 也可以。

复杂度

??从递归深度开始考虑??(大误,递归深度最大即为 $k$ 啊!!!我真是沙茶)

Implementation

#include <bits/stdc++.h>
using namespace std; vector<int> a;
long long res;
long double product;
const int mod = 1e9 + 7; int n, k; void dfs(int x, long double cur_prod){
if(a.size() == k || x == 1){
// product = cur_rod;
res = 1;
product = cur_prod;
for(auto i: a){
// product *= i;
res *= i, res %= mod;
}
return;
}
if(cur_prod * pow((long double)x, k - a.size()) <= product)
return; // 剪枝
bool flag = true;
for(auto i: a)
if(__gcd(x, i) != 1){
flag = false;
break;
}
if(flag){
a.push_back(x);
dfs(x-1, cur_prod * x);
a.pop_back();
}
dfs(x-1, cur_prod);
} int main(){
// int n, k;
cin >> n >> k;
// product = n == 1 ? n : n * (n - 1);
product = n;
res = n;
dfs(n, 1);
cout << res << endl;
return 0;
}

上面代码中的 dfs() 还有一种写法:

void dfs(int x, long double cur_prod){
if(a.size() == k || x == 1){
res = 1;
product = cur_prod;
for(auto i: a){
res *= i, res %= mod;
}
return;
} for(int i = x; ; i--){
bool flag = true;
for(auto j: a){
if(__gcd(i, j) != 1){
flag = false;
break;
}
}
if(!flag) continue; if(cur_prod * pow((long double)i, k - a.size()) <= product)
break;
a.push_back(i);
dfs(i, cur_prod * i);
a.pop_back(); }
}

hihoCoder #1072 辅导的更多相关文章

  1. hihocoder -1121-二分图的判定

    hihocoder -1121-二分图的判定 1121 : 二分图一•二分图判定 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 大家好,我是小Hi和小Ho的小伙伴Net ...

  2. Hihocoder 太阁最新面经算法竞赛18

    Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...

  3. hihoCoder太阁最新面经算法竞赛15

    hihoCoder太阁最新面经算法竞赛15 Link: http://hihocoder.com/contest/hihointerview24 题目1 : Boarding Passes 时间限制: ...

  4. 【hihoCoder 1454】【hiho挑战赛25】【坑】Rikka with Tree II

    http://hihocoder.com/problemset/problem/1454 调了好长时间,谜之WA... 等我以后学好dp再来看为什么吧,先弃坑(╯‵□′)╯︵┻━┻ #include& ...

  5. 【hihocoder#1413】Rikka with String 后缀自动机 + 差分

    搞了一上午+接近一下午这个题,然后被屠了个稀烂,默默仰慕一晚上学会SAM的以及半天4道SAM的hxy大爷. 题目链接:http://hihocoder.com/problemset/problem/1 ...

  6. 【hihoCoder】1148:2月29日

    问题:http://hihocoder.com/problemset/problem/1148 给定两个日期,计算这两个日期之间有多少个2月29日(包括起始日期). 思路: 1. 将问题转换成求两个日 ...

  7. 【hihoCoder】1288 : Font Size

    题目:http://hihocoder.com/problemset/problem/1288 手机屏幕大小为 W(宽) * H(长),一篇文章有N段,每段有ai个字,要求使得该文章占用的页数不超过P ...

  8. 【hihoCoder】1082: 然而沼跃鱼早就看穿了一切

      题目:http://hihocoder.com/problemset/problem/1082 输入一个字符串,将其中特定的单词替换成另一个单词   代码注意点: 1. getline(istre ...

  9. 【hihoCoder】1121:二分图一·二分图判定

      题目   http://hihocoder.com/problemset/problem/1121 无向图上有N个点,两两之间可以有连线,共有M条连线. 如果对所有点进行涂色(白/黑),判定是否存 ...

随机推荐

  1. MySql5.7主从配置

    记录 环境:ubuntu16.04,mysql5.7 主机:192.168.1.240,192.168.1.241:241为Salve 1.安装mysql sudo apt-get install m ...

  2. CF Gym 100187M Heaviside Function(二分)

    题意:给你一个函数和一些系数,给你一堆询问,求函数值. 根据s的符号,分成两组讨论,函数值与比x小的系数数量有关,二分输出答案. #include<cstdio> #include< ...

  3. Java的数组与内存控制

    1     数组基础 数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成.其中,每一个数据称作一个数组元素(item),每个数组元素可以通过一个下标/索引来(index)访问它们. 数组 ...

  4. ansible 任务委派 delegate_to

    ansible 任务委派功能delegate_to run_noce: true  在一个主机上面只执行一次一个任务. ,如果没有这个参数的话,每个playbook中的组的主机都会执行一次. 我们有的 ...

  5. Problem N: 求二维数组中的鞍点【数组】

    Problem N: 求二维数组中的鞍点[数组] Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2764  Solved: 1728[Submit][S ...

  6. AutoWidthInput

    import React from 'react'; import PropTypes from 'prop-types'; class AutoWidthInput extends React.Co ...

  7. js中异步方案比较完整版(callback,promise,generator,async)

    JS 异步已经告一段落了,这里来一波小总结 1. 回调函数(callback) setTimeout(() => { // callback 函数体 }, 1000) 缺点:回调地狱,不能用 t ...

  8. 洛谷 P1593 因子和

    https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...

  9. 【线性基】bzoj2844: albus就是要第一个出场

    线性基求可重rank 题目描述 给定 n 个数 $\{ a_i \}$ ,以及数 $x$. 将 $\{ a_i \}$​ 的所有子集(包括空集)的异或值从小到大排序,得到 $\{ b_i \} $. ...

  10. token_get_all()函数

    token_get_all (PHP 4 >= 4.2.0, PHP 5) token_get_all — 将提供的源码按 PHP 标记进行分割,可以用作php源代码的压缩,会按照固定的分解方法 ...