hihoCoder #1072 辅导
题意
$\DeclareMathOperator{\lcm}{lcm}$选 $k$ ($k\le 10$) 个 $1$ 到 $n$($n\le 10^9$)之间的整数(可以相同),使得 $\lcm(a_1, \dots, a_k)$ 最大。
题解
这是 hihoCoder 挑战赛 #6 的 B 题,CLJ(WJMZBMR) 出的。CLJ 的题解:
首先我们注意到,如果你选择了两个不互质的 $a, b$,那么不妨把 $a$ 换成 $a/(a,b)$。显然 LCM 还是不变的。
这意味着存在一组最优解使得所有选择的数都两两互质。
那么我们不妨使用暴搜,首先我们注意到我们至少可以选择比 $n$ 小的最大的 $k$ 个质数来当做初始解。
然后我们从大到小枚举是否使用,搜到 $x$ 时,假如当前最优解是 $ans$, 当前 LCM 是 $w$, 如果还能选择 $t$ 个, 假如 $wx^t \le ans$,那么显然已经无法得出更优的解了,就可以剪枝了。
首先需要指出,上面题解中
如果你选择了两个不互质的数 $a, b$,那么不妨把 $a$ 换成 $a/(a,b)$ 。显然 LCM 还是不变的。
这个结论是错误的,很容易举出反例:$a=4, b=2$,可能是作者笔误。不过,对于不互质的两个数 $a,b$ ,确实存在两个互质的数 $a',b'$ ($a'\le a, b'\le b$),使得 $\lcm(a',b') = \lcm(a,b)$。
写出 $a, b$ 两数的质因子展开式,设
$$
\begin{align}
a = p_1^{i_1} p_2^{i_2}\dots p_n^{i_n} \notag\
b = p_1^{j_1} p_2^{j_2}\dots p_n^{j_n} \notag
\end{align}
$$
在 $a$,$b$ 展开式中,只保留幂次较大的项便得到了 $a'$, $b'$。
至此,我遇到了一个困难:如何求比 $n$($n\le 10^9$)小的最大的 $k$($k\le 10$)个素数?
当然,求出 $k$ 个最大的素数并非我们的最终目的,这样做只是为了得到一个较大的初始解,求出不满 $k$ 个最大的素数也无妨,从而我们可以暴力判断后若干(比如 100)个数。另外,应当能看出初始解是否取一个较大的值,对程序运行时间影响并不大,将其取为 $n$ 甚至 $0$ 也可以。
复杂度
??从递归深度开始考虑??(大误,递归深度最大即为 $k$ 啊!!!我真是沙茶)
Implementation
#include <bits/stdc++.h>
using namespace std;
vector<int> a;
long long res;
long double product;
const int mod = 1e9 + 7;
int n, k;
void dfs(int x, long double cur_prod){
if(a.size() == k || x == 1){
// product = cur_rod;
res = 1;
product = cur_prod;
for(auto i: a){
// product *= i;
res *= i, res %= mod;
}
return;
}
if(cur_prod * pow((long double)x, k - a.size()) <= product)
return; // 剪枝
bool flag = true;
for(auto i: a)
if(__gcd(x, i) != 1){
flag = false;
break;
}
if(flag){
a.push_back(x);
dfs(x-1, cur_prod * x);
a.pop_back();
}
dfs(x-1, cur_prod);
}
int main(){
// int n, k;
cin >> n >> k;
// product = n == 1 ? n : n * (n - 1);
product = n;
res = n;
dfs(n, 1);
cout << res << endl;
return 0;
}
上面代码中的 dfs() 还有一种写法:
void dfs(int x, long double cur_prod){
if(a.size() == k || x == 1){
res = 1;
product = cur_prod;
for(auto i: a){
res *= i, res %= mod;
}
return;
}
for(int i = x; ; i--){
bool flag = true;
for(auto j: a){
if(__gcd(i, j) != 1){
flag = false;
break;
}
}
if(!flag) continue;
if(cur_prod * pow((long double)i, k - a.size()) <= product)
break;
a.push_back(i);
dfs(i, cur_prod * i);
a.pop_back();
}
}
hihoCoder #1072 辅导的更多相关文章
- hihocoder -1121-二分图的判定
hihocoder -1121-二分图的判定 1121 : 二分图一•二分图判定 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 大家好,我是小Hi和小Ho的小伙伴Net ...
- Hihocoder 太阁最新面经算法竞赛18
Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...
- hihoCoder太阁最新面经算法竞赛15
hihoCoder太阁最新面经算法竞赛15 Link: http://hihocoder.com/contest/hihointerview24 题目1 : Boarding Passes 时间限制: ...
- 【hihoCoder 1454】【hiho挑战赛25】【坑】Rikka with Tree II
http://hihocoder.com/problemset/problem/1454 调了好长时间,谜之WA... 等我以后学好dp再来看为什么吧,先弃坑(╯‵□′)╯︵┻━┻ #include& ...
- 【hihocoder#1413】Rikka with String 后缀自动机 + 差分
搞了一上午+接近一下午这个题,然后被屠了个稀烂,默默仰慕一晚上学会SAM的以及半天4道SAM的hxy大爷. 题目链接:http://hihocoder.com/problemset/problem/1 ...
- 【hihoCoder】1148:2月29日
问题:http://hihocoder.com/problemset/problem/1148 给定两个日期,计算这两个日期之间有多少个2月29日(包括起始日期). 思路: 1. 将问题转换成求两个日 ...
- 【hihoCoder】1288 : Font Size
题目:http://hihocoder.com/problemset/problem/1288 手机屏幕大小为 W(宽) * H(长),一篇文章有N段,每段有ai个字,要求使得该文章占用的页数不超过P ...
- 【hihoCoder】1082: 然而沼跃鱼早就看穿了一切
题目:http://hihocoder.com/problemset/problem/1082 输入一个字符串,将其中特定的单词替换成另一个单词 代码注意点: 1. getline(istre ...
- 【hihoCoder】1121:二分图一·二分图判定
题目 http://hihocoder.com/problemset/problem/1121 无向图上有N个点,两两之间可以有连线,共有M条连线. 如果对所有点进行涂色(白/黑),判定是否存 ...
随机推荐
- Connectivity
6492: Connectivity 时间限制: 1 Sec 内存限制: 128 MB提交: 118 解决: 28[提交][状态][讨论版][命题人:admin] 题目描述 There are N ...
- Java替换手机号掩码
String tel = "18304072984"; // 括号表示组,被替换的部分$n表示第n组的内容 tel = tel.replaceAll("(\\d{3})\ ...
- JTT808、JTT809、JTT796、JTT794、JTT1077、JTT1078区别与交通部道路运输车辆卫星定位系统部标标准大全下载地址
部标JT/T808协议.JT/T809协议.JT/T796标准.JT/T794标准的区别,他们是基于不同的通信场景,不同的通信对象,不同的设计目的和目标而制定出来的.首先要知道这些标准的全称是什么意思 ...
- 作业题:输出单个字符 输入单个字符 scanf printf
输出单个字符用putchar() #include <iostream> using namespace std; int main(){ char x='B'; char y='O'; ...
- Android读书笔记一
通过本章的学习真实体会到“移植”的概念:为特定设备定制Android的过程,但是移植的过程中开发最多的就是支持各种硬件设备的Linux驱动程序,本章对Android和Linux做了总体介绍.接着介绍了 ...
- redis学习笔记(3)
redis学习笔记第三部分 --redis持久化介绍,事务,主从复制 三,redis的持久化 RDB(Redis DataBase)AOF(Append Only File) RDB:在指定的时间间隔 ...
- 09GNU C语言程序编译
1. C 语言程序概述 GNU gcc 对 ISO 标准 C89 描述的 C 语言进行了一些扩展,其中一些扩展部分已经包括进 IOS C99 标准中.本节给出了内核中经常用到的一些 gcc 扩展语 ...
- python并发编程之进程1(守护进程,进程锁,进程队列)
进程的其他方法 P = Process(target=f,) P.Pid 查看进程号 查看进程的名字p.name P.is_alive() 返回一个true或者False P.terminate( ...
- Python学习笔记:re模块(正则表达式)
本文是部分内容参考自:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html,虽然这篇博客是基于Python2.4的老版本,但是基础的P ...
- nrf52裸机学习——GPIO操作
/** * @brief Function for writing a value to a GPIO pin. * * Note that the pin must be configured as ...