Problem statement

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Solution

0/1 knapsack problem is a classical dynamic programming model. There is a knapsack with the capacity of m, you should find the maximum volume can be filled in.

Still, we need:

  • DP memory and the representation
  • The initialization of DP memory
  • DP formula
  • Return value.

DP memory and the representation

Suppose, size is the number of elements in A.

A two dimension array: dp[size + 1][m + 1]

  • dp[i][j]: means the maximum volume formed by first i elements whose volume is at most j.

The key word is the first and at most.

  • The first means there are i + 1 elements.
  • At most means the total volume can not exceed j.

Initialization

For a two dimension DP memory, normally, we should initialize the first row and column, and start from i = 1 and j = 1. The initialization comes from general knowledge.

  • dp[0][i]: first 0 elements can form at most i volume. Obviously, the initialization is 0 since we can get nothing if there is no elements.
  • dp[i][0]: first i elements can form at most 0 volume. Obviously, the initialization is 0 since we can get 0 volume by any elements.

DP formula

For current element A[i], we need to know what is the maximum volume can get if we add it into the backpack.

  • dp[i][j] = dp[i - 1][j] if A[i - 1] is greater than j
  • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - A[i - 1]]) if j >= A[i - 1], we find the maximum value.

Return value.

Just return dp[size][m]

Time complexity is O(size * m)

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
// write your code here
int size = A.size();
//vector<vector<int>> dp(size + 1, vector<int>(m + 1, 0));
int dp[size + ][m + ] = {};
for(int i = ; i <= size; i++){
for(int j = ; j <= m; j++){
dp[i][j] = dp[i - ][j];
if(j >= A[i - ]){
dp[i][j] = max(dp[i][j], V[i - ] + dp[i - ][j - A[i - ]]);
}
}
}
return dp[size][m];
}
};

0/1 knapsack problem的更多相关文章

  1. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  2. 对背包问题(Knapsack Problem)的算法探究

    对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. FZU 2214 ——Knapsack problem——————【01背包的超大背包】

    2214 Knapsack problem Accept: 6    Submit: 9Time Limit: 3000 mSec    Memory Limit : 32768 KB  Proble ...

  5. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  6. knapsack problem 背包问题 贪婪算法GA

    knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...

  7. [DP] The 0-1 knapsack problem

    Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...

  8. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  9. (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)

    http://acm.fzu.edu.cn/problem.php?pid=2214   Problem Description Given a set of n items, each with a ...

随机推荐

  1. python之enumerate

    http://eagletff.blog.163.com/blog/static/116350928201266111125832/一般情况下,如果要对一个列表或者数组既要遍历索引又要遍历元素时,可以 ...

  2. js基础之语言部分必须要掌握的五大方阵

    javascript基础部分可以从"数组, 函数, 作用域, 对象, 标准库"这5大方阵进行学习: (一).数组 数组的声明(2种):; a,自变量声明 var a = ['a', ...

  3. SunmmerVocation_Learning--Java数组的创建

    一维数组声明方式: type var[] 或 type[] var; 如int a[], int[] a; Java中声明数组不能指定其长度,如int a[5]是非法的. 一维数组对象的创建: Jav ...

  4. 爬虫学习(八)——带cookie的网页进行爬取

    # 前提:# # 通常,很多网站需要登录才能进行浏览,所以在爬取这些网站时,也需要进行登录,并拿取登录时的cookie# # 登录网页,服务器会给客户端一个牌子cookie# # 访问登录页面时,带着 ...

  5. Iframe父子间元素操作

    1.在父页面 获取iframe子页面的元素 (在同域的情况下 且在http://下测试,且最好在iframe onload加载完毕后 dosomething...) js写法 a.通过contentW ...

  6. 了解并使用springAOP(面向切面编程)

    Aop是干嘛的为什么要使用它 在业务系统中,总有一些散落,渗透到系统的各处且不得不处理的事情,这些穿插在既定业务中的操作就是所谓的“横切逻辑”,也称切面, 我们怎样才不受这些附加要求的干扰,专心于真正 ...

  7. Computer HDU - 2196

    Computer HDU - 2196 A school bought the first computer some time ago(so this computer's id is 1). Du ...

  8. Docker从零到实践过程中的坑

    欢迎指正: Centos7 下的ulimit在Docker中的坑 http://www.dockone.io/article/522 僵尸容器:Docker 中的孤儿进程 https://yq.ali ...

  9. [Hdu3652]B-number(数位DP)

    Description 题目大意:求小于n是13的倍数且含有'13'的数的个数. (1 <= n <= 1000000000) Solution 数位DP,题目需要包含13,且被13整除, ...

  10. 笔记-python-装饰器

    笔记-python-装饰器 1.  装饰器 装饰器的实质是返回的函数对象的函数,其次返回的函数对象是可以调用的,搞清楚这两点后,装饰器是很容易理解的. 1.1.  相关概念理解 首先,要理解在Pyth ...