Problem statement

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Solution

0/1 knapsack problem is a classical dynamic programming model. There is a knapsack with the capacity of m, you should find the maximum volume can be filled in.

Still, we need:

  • DP memory and the representation
  • The initialization of DP memory
  • DP formula
  • Return value.

DP memory and the representation

Suppose, size is the number of elements in A.

A two dimension array: dp[size + 1][m + 1]

  • dp[i][j]: means the maximum volume formed by first i elements whose volume is at most j.

The key word is the first and at most.

  • The first means there are i + 1 elements.
  • At most means the total volume can not exceed j.

Initialization

For a two dimension DP memory, normally, we should initialize the first row and column, and start from i = 1 and j = 1. The initialization comes from general knowledge.

  • dp[0][i]: first 0 elements can form at most i volume. Obviously, the initialization is 0 since we can get nothing if there is no elements.
  • dp[i][0]: first i elements can form at most 0 volume. Obviously, the initialization is 0 since we can get 0 volume by any elements.

DP formula

For current element A[i], we need to know what is the maximum volume can get if we add it into the backpack.

  • dp[i][j] = dp[i - 1][j] if A[i - 1] is greater than j
  • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - A[i - 1]]) if j >= A[i - 1], we find the maximum value.

Return value.

Just return dp[size][m]

Time complexity is O(size * m)

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
// write your code here
int size = A.size();
//vector<vector<int>> dp(size + 1, vector<int>(m + 1, 0));
int dp[size + ][m + ] = {};
for(int i = ; i <= size; i++){
for(int j = ; j <= m; j++){
dp[i][j] = dp[i - ][j];
if(j >= A[i - ]){
dp[i][j] = max(dp[i][j], V[i - ] + dp[i - ][j - A[i - ]]);
}
}
}
return dp[size][m];
}
};

0/1 knapsack problem的更多相关文章

  1. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  2. 对背包问题(Knapsack Problem)的算法探究

    对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. FZU 2214 ——Knapsack problem——————【01背包的超大背包】

    2214 Knapsack problem Accept: 6    Submit: 9Time Limit: 3000 mSec    Memory Limit : 32768 KB  Proble ...

  5. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  6. knapsack problem 背包问题 贪婪算法GA

    knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...

  7. [DP] The 0-1 knapsack problem

    Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...

  8. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  9. (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)

    http://acm.fzu.edu.cn/problem.php?pid=2214   Problem Description Given a set of n items, each with a ...

随机推荐

  1. Bootstrap 历练实例 - 折叠(Collapse)插件事件

    事件 下表列出了折叠(Collapse)插件中要用到的事件.这些事件可在函数中当钩子使用. 事件 描述 实例 show.bs.collapse 在调用 show 方法后触发该事件. $('#ident ...

  2. wepy框架构建小程序(1)

    wepy框架构建小程序(1) 基本操作: # 安装脚手架工具 npm install wepy-cli -g # 创建一个新的项目 npm init standard myproject # 进入新项 ...

  3. 【Django】Django中的模糊查询以及Q对象的简单使用

    Django中的模糊查询: 需要做一个查找的功能,所以需要使用到模糊查询. 使用方法是:字段名加上双下划线跟上contains或者icontains,icontains和contains表示是否区分大 ...

  4. javascript 计算倒计时

    function timeDown(second) { var month = '', day = '', hour = '', minute = ''; if (second >= 86400 ...

  5. JavaScript对象创建的九种方式

    1.标准创建对象模式 var person = new Object(); person.name = "Nicholas"; person.age = 29; person.jo ...

  6. PAT Advanced 1001

    1001 A+B Format (20 分) Calculate a+b and output the sum in standard format -- that is, the digits mu ...

  7. android shape.xml 文件使用

    设置背景色可以通过在res/drawable里定义一个xml,如下: <?xml version="1.0" encoding="utf-8"?> ...

  8. windows下虚拟环境中配置MySQL-python错误问题

    下载mysql 下载mysql-python 这两步基本没有问题怪就怪的 MySQL-python-1.2.3.win-amd64-py2.7 文件只能安装到python27  路径下 然后在虚拟环境 ...

  9. day10 消息队列,多进程和多线程以及协程,异步IO,事件驱动等

    回顾一下线程和进程 线程与进程的区别 守护线程: 队列: 两种方式: 先进先出  # 后入先出   #卖水果,后来的来的是新的 生产者消费者模型: 生产包子, 吃包子 事件 event: 红绿灯模型 ...

  10. 在IE浏览器下,PDF将弹出窗口遮挡了

    写了个embed标签里面放这个pdf 然后点击其他地方的弹框pdf把他遮盖住了 如下: 先是改z-index,没卵用. 百度了好久,终于找到了个有用的 https://blog.csdn.net/it ...