Problem statement

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Solution

0/1 knapsack problem is a classical dynamic programming model. There is a knapsack with the capacity of m, you should find the maximum volume can be filled in.

Still, we need:

  • DP memory and the representation
  • The initialization of DP memory
  • DP formula
  • Return value.

DP memory and the representation

Suppose, size is the number of elements in A.

A two dimension array: dp[size + 1][m + 1]

  • dp[i][j]: means the maximum volume formed by first i elements whose volume is at most j.

The key word is the first and at most.

  • The first means there are i + 1 elements.
  • At most means the total volume can not exceed j.

Initialization

For a two dimension DP memory, normally, we should initialize the first row and column, and start from i = 1 and j = 1. The initialization comes from general knowledge.

  • dp[0][i]: first 0 elements can form at most i volume. Obviously, the initialization is 0 since we can get nothing if there is no elements.
  • dp[i][0]: first i elements can form at most 0 volume. Obviously, the initialization is 0 since we can get 0 volume by any elements.

DP formula

For current element A[i], we need to know what is the maximum volume can get if we add it into the backpack.

  • dp[i][j] = dp[i - 1][j] if A[i - 1] is greater than j
  • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - A[i - 1]]) if j >= A[i - 1], we find the maximum value.

Return value.

Just return dp[size][m]

Time complexity is O(size * m)

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
// write your code here
int size = A.size();
//vector<vector<int>> dp(size + 1, vector<int>(m + 1, 0));
int dp[size + ][m + ] = {};
for(int i = ; i <= size; i++){
for(int j = ; j <= m; j++){
dp[i][j] = dp[i - ][j];
if(j >= A[i - ]){
dp[i][j] = max(dp[i][j], V[i - ] + dp[i - ][j - A[i - ]]);
}
}
}
return dp[size][m];
}
};

0/1 knapsack problem的更多相关文章

  1. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  2. 对背包问题(Knapsack Problem)的算法探究

    对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. FZU 2214 ——Knapsack problem——————【01背包的超大背包】

    2214 Knapsack problem Accept: 6    Submit: 9Time Limit: 3000 mSec    Memory Limit : 32768 KB  Proble ...

  5. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  6. knapsack problem 背包问题 贪婪算法GA

    knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...

  7. [DP] The 0-1 knapsack problem

    Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...

  8. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  9. (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)

    http://acm.fzu.edu.cn/problem.php?pid=2214   Problem Description Given a set of n items, each with a ...

随机推荐

  1. ML.NET技术研究系列1-入门篇

    近期团队在研究机器学习,希望通过机器学习实现补丁发布评估,系统异常检测.业务场景归纳一下: 收集整理数据(发布相关的异常日志.告警数据),标识出补丁发布情况(成功.失败) 选择一个机器学习的Model ...

  2. css代码

    #footr { background: #3e434a } #header #blogTitle { background: url("http://images.cnblogs.com/ ...

  3. Django项目中"expected str, bytes or os.PathLike object, not list"错误解决:

    对于这个错误,也在于自己对django基础的掌握不是很牢固,忽略了MEDIA_ROOT的类型是string,而不是list. 错误的写法: MEDIA_ROOT = [ os.path.join(BA ...

  4. Linux更改文件权限(二)

    更改文件权限(二)============================== (参考于千锋教育教学笔记) 命令umask [root@aminglinux ~]# umask 0022 [root@ ...

  5. Python_三级目录

    程序要求: 1. 使用字典存储 1. 可以一层一层的进入到所有层2. 可以在每层返回上一层3. 可以在任意层退出 三级目录写了两个版本,第一个版本是刚看完字典写出来的,代码很多冗余,很多重复. men ...

  6. JZOJ 5347. 遥远的金字塔

    Description Input Output Sample Input 5 3 1 6 1 5 3 5 4 4 4 4 Sample Output 15 Data Constraint 做法: 其 ...

  7. POJ 2586 贪心+枚举

    Y2K Accounting Bug Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15626   Accepted: 78 ...

  8. 在VIM 里面编辑和保存

    #查看a.sh 的内容 cat a.sh #编辑a.sh的内容 键入i,下面会出现 insert,输入内容之后按下esc会退出编辑模式(此时下面的insert没有了) 再输入:wq保存

  9. Linux命令之---cd

    命令简介 Linux cd 命令是Linux中最基本的命令语句,其他的命令语句要进行操作,都是建立在使用 cd 命令上的. 命令格式 cd [目录名] 命令功能 切换当前目录至dirName 常用范例 ...

  10. visual studio 2010 自带reporting报表本地加载的使用

    原文:visual studio 2010 自带reporting报表本地加载的使用 在这家公司时间不长,接触都是之前没玩过的东东,先是工作流引擎和各种邮件短信的审核信息,后又是部署reporting ...