ACM的数学基础
懒得整理了,请勿往下看。
(一)欧拉函数
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。有如下一些性质:
(1)欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
(2)特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。欧拉函数值总是为偶数(除了特殊情况)。
(3)若n为质数则φ(n)=n-1。
(4)若n=pk,φ(n) = pk - p(k-1) = (p-1)*p(k-1),因为除了p的倍数外,其他数都跟n互质。
(5)φ函数值的通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)*…..*(1-1/pn),其中p1, p2……pn为x的所有质因数,且x>=2。特殊情况 φ(1)=1。 (注意:每种质因数只需要一个。
比如12=2*2*3那么φ(12)= 12*(1-1/2)*(1-1/3)=4,因为1,5,7,11均和12互质。比如φ(8)=4,因为1,3,5,7均和8互质。
(二)欧拉定理
若n与a互质,且皆为正整数,则
。
(三)乘法逆元
定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。
(1)为什么要有乘法逆元呢?
答:当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
定理:a存在模p的乘法逆元的充要条件是gcd(a,p) = 1
(2)如何求解 (a/b) mod p 的结果?
答:我们可以通过求b关于p的乘法逆元k,将a乘上k再模p( 即ans=(a*k)%p,这样就比较好算了 )。其结果与 (a/b) % p 等价。
(3)如何证明?
证明:
根据b*k≡1 (mod p)有b*k=p*x+1,那么k=(p*x+1)/b。
把k代入(a*k) mod p,得:
(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//注:p*[(a*x)/b] mod p=0,因为既然要取模,a/b的结果肯定是为正整数。
所以原式等于:(a/b) mod p
证毕!
补:还有一条公式也是用于求模用的:
(ans表示我们要求的结果,且无需考虑所有数字的特殊性)
ACM的数学基础的更多相关文章
- ACM失败之路
校赛打完,已过四月,该是准备背起行囊,踏上考研之路了,自然,得先阔别一下ACM了,想起这几年ACM路,感慨颇多,不得不一诉心肠,与大家分享一下我的ACM历程,如果有人能从此文获取一些益处,那我就很欣慰 ...
- ACM起步要点总结(转哈工大)
首先,我想说的就是,我是一个很普通的ACMer,高中没有参加过任何计算机和数学竞赛的经历,也没有ben那样过人的天资,努力至今也未能取得什么成绩,我之所以写下这篇文章,只是希望给刚进大学或者刚进ACM ...
- 2013 ACM网络搜索与数据挖掘国际会议
ACM网络搜索与数据挖掘国际会议" title="2013 ACM网络搜索与数据挖掘国际会议"> 编者按:ACM网络搜索与数据挖掘国际会议(6th ACM Conf ...
- SCNU ACM 2016新生赛决赛 解题报告
新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...
- SCNU ACM 2016新生赛初赛 解题报告
新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...
- acm结束了
最后一场比赛打完了.之前为了记录一些题目,开了这个博客,现在结束了acm,这个博客之后也不再更新了. 大家继续加油!
- 关于ACM的总结
看了不少大神的退役帖,今天终于要本弱装一波逼祭奠一下我关于ACM的回忆. 从大二上开始接触到大三下结束,接近两年的时间,对于大神们来说两年的确算不上时间,然而对于本弱来说就是大学的一半时光.大一的懵懂 ...
- 第一届山东省ACM——Phone Number(java)
Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...
- 第一届山东省ACM——Balloons(java)
Description Both Saya and Kudo like balloons. One day, they heard that in the central park, there wi ...
随机推荐
- Linux命令总结_sort排序命令
1.sort命令是帮我们依据不同的数据类型进行排序,其语法及常用参数格式: sort [-bcfMnrtk][源文件][-o 输出文件] 补充说明:sort可针对文本文件的内容,以行为单位 ...
- 【hdu2955】 Robberies 01背包
标签:01背包 hdu2955 http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:盗贼抢银行,给出n个银行,每个银行有一定的资金和抢劫后被抓的概率,在 ...
- 锐捷认证的一些问题&解决方法
scau锐捷校园网各种无法吐槽,认证有时候自己掉线了麻痹都打到boss了给我掉线,收费也坑爹,连铁通都比不上. 1.锐捷认证客户端已停止工作: 貌似是毒霸的问题,把金山毒霸关掉再试 2.获取ip地址信 ...
- 下载win7/win8/win10镜像
关于给电脑换系统,很多人会花钱去电脑店里换,或者是下载Ghost系统.但这些系统都不是微软原版的,制作者已经集成了很多常用软件或垃圾软件进去.我在这给大家介绍的是如何下载正版的Windows系统.这个 ...
- UVaLive 4094 WonderTeam (贪心)
题意:有n支队伍,每两支队伍打两场比赛(主客场各一次),胜得3分,平得1分,输不得分,比赛结束之后会评选出一个梦之队, 梦之队满足以下条件:进球总数最多,胜利场数最多,丢求总数最少,三个都不能并列,求 ...
- Linux/Unix中的命令提示符prompt
用惯了DOS的伙计刚用Unix时最想干的事情就是想把Unix搞得像DOS一些, 其中的一条就是把Unix的提示符设置成$p$g那样的.下面就说一说做的方法. 不同的SHELL设置的方法不同,比较方便的 ...
- “MVC+Nhibernate+Jquery-EasyUI”信息发布系统 第二篇(数据库结构、登录窗口、以及主界面)
一.在上一篇文章中,主要说的就是把主框架搭建起来,并且Nhibernate能达到增删改查的地步.测试好之后再来看这篇文章,我的主框架相对来说简答一点,重点还是实现系统的功能,以及对Jquery-Eas ...
- 蓝桥杯 正则问题(dfs)
1607: 正则问题 时间限制: 1 Sec 内存限制: 256 MB提交: 34 解决: 13[提交][状态][讨论版] 题目描述 考虑一种简单的正则表达式:只由 x ( ) | 组成的正则表达 ...
- Xilinx SDSoc 加载opencv库
Xilinx SDSoc 加载opencv库需要下载两个文件 xfopencv 和 Revision Platform, Revision Platform需要和具体的开发板型号对应,我用的是zcu1 ...
- 搭建 Keras
首先安装ipython ipython安装完成以后出现如下界面 然后安装theano 中途安装因为网络不好,造成超时而停止安装或者停滞不前,则按下Ctrl+C,停止此操作,或者关掉Anaconda P ...