multiple r squared

adjusted r squared

http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html

Goodness-of-Fit Statistics

Sum of Squares Due to Error

This statistic measures the total deviation of the response values from the fit to the response values. It is also called the summed square of residuals and is usually labelled as SSE.

      SSE = Sum

(i=1 to n)

      {

wi 

      (

yi - fi

      )

2

    }

Here yi is the observed data value and fi is the predicted value from the fit. wi is the weighting applied to each data point, usually wi = 1.

A value closer to 0 indicates that the model has a smaller random error component, and that the fit will be more useful for prediction.

R-Square

This statistic measures how successful the fit is in explaining the variation of the data. Put another way, R-square is the square of the correlation between the response values and the predicted response values. It is also called the square of the multiple correlation coefficient and the coefficient of multiple determination.

R-square is defined as

      R-square = 1 - [Sum

(i=1 to n)

      {

wi

      (

y- fi

      )

2

      }] /[Sum

(i=1 to n)

      {

wi

      (

yi - yav

      )

2

    }] = 1 - SSE/SST

Here fi is the predicted value from the fit, yav is the mean of the observed data yi is the observed data value. wi is the weighting applied to each data point, usually wi=1. SSE is the sum of squares due to error and SST is the total sum of squares.

R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater proportion of variance is accounted for by the model. For example, an R-square value of 0.8234 means that the fit explains 82.34% of the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will increase although the fit may not improve in a practical sense. To avoid this situation, you should use the degrees of freedom adjusted R-square statistic described below.

Note that it is possible to get a negative R-square for equations that do not contain a constant term. Because R-square is defined as the proportion of variance explained by the fit, if the fit is actually worse than just fitting a horizontal line then R-square is negative. In this case, R-square cannot be interpreted as the square of a correlation. Such situations indicate that a constant term should be added to the model.

Degrees of Freedom Adjusted R-Square

This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees of freedom. The residual degrees of freedom is defined as the number of response values nminus the number of fitted coefficients m estimated from the response values.

v = n-m

v indicates the number of independent pieces of information involving the n data points that are required to calculate the sum of squares. Note that if parameters are bounded and one or more of the estimates are at their bounds, then those estimates are regarded as fixed. The degrees of freedom is increased by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality when you compare two models that are nested – that is, a series of models each of which adds additional coefficients to the previous model.

      adjusted R-square = 1 - SSE(

n

      -1)/SST(

v

    )

The adjusted R-square statistic can take on any value less than or equal to 1, with a value closer to 1 indicating a better fit. Negative values can occur when the model contains terms that do not help to predict the response.

Root Mean Squared Error

This statistic is also known as the fit standard error and the standard error of the regression. It is an estimate of the standard deviation of the random component in the data, and is defined as

      RMSE =

 s

      = (MSE)

½

where MSE is the mean square error or the residual mean square

      MSE=SSE/

v

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for prediction.

r squared的更多相关文章

  1. 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)

    一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...

  2. 线性函数拟合R语言示例

    线性函数拟合(y=a+bx) 1.       R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, ...

  3. R语言︱非结构化数据处理神器——rlist包

    本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者. 近年来,非关系型数据逐渐获得了更广泛的关注和使用.下面分别列举 ...

  4. R语言命令汇总

    > qqplot(spear,fastrankweight)> qqplot(spear,fastrankweight,main="title")> qqplot ...

  5. R ggplot2 线性回归

    摘自  http://f.dataguru.cn/thread-278300-1-1.html library(ggplot2) x=1:10y=rnorm(10)a=data.frame(x= x, ...

  6. r语言与dataframe

    什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表 ...

  7. R语言学习笔记(二十四):plyr包的用法

    plyr 这个包,提供了一组规范的数据结构转换形式. Input/Output list data frame array list llply() ldply() laply() data fram ...

  8. a note of R software write Function

    Functionals “To become significantly more reliable, code must become more transparent. In particular ...

  9. Advanced R之构造子集

    转发请声明出处:http://www.cnblogs.com/lizichao/p/4794733.html 构造子集 R构造子集的操作功能强大而且速度快.精通构造子集者可以用简洁的方式表达复杂的操作 ...

随机推荐

  1. 三、 java运算符与流程控制

    赋值运算 赋值运算符:=,+=,-=,×=,/=,%= class fuzhiyunsuan{ public static void main(String[] args){ int i1 = 10; ...

  2. 开发使用mysql的一些必备知识点整理(二)查询

    简介 查询的基本语法 select * from 表名; from关键字后面写表名,表示数据来源于是这张表 select后面写表中的列名,如果是*表示在结果中显示表中所有列 在select后面的列名部 ...

  3. PHP平均整数红包算法

    <?php function RandomMoney( $money,$num ){ $arr = array(); $total_money = 0; $this_money = $money ...

  4. 3.【nuxt起步】-下面以一个SPA单页程序为例子

    spa:single page applcation 1.components目录新建header.vue,footer.vue Header.vue Footer.vue Pages/index.v ...

  5. Samp免流软件以及地铁跑酷的自校验分析

    [文章标题]:Samp免流软件以及地铁跑酷的自校验分析 [文章作者]: Ericky [作者博客]: http://blog.csdn.net/hk9259 [下载地址]: 自行百度 [保护方式]: ...

  6. iOS加急审核之2015年总结

    就在今天到公司的一会,查看了一下邮件,收到Apple的回复,今年的第六次加急审核通过了. 然后,想想明天就是西方的圣诞节假期了,从22日到29日的这段时间,Apple会暂时关闭iTunesconnec ...

  7. IOS 开发推荐经常使用lib

    1. Mantle Mantle 让我们能简化 Cocoa 和 Cocoa Touch 应用的 model 层.简单点说.程序中常常要进行网络请求,请求到得通常是 json 字符串.我们通常会建一个 ...

  8. SpringMVC:走通一个SpringMVC

    我们现在使用SpringMVC来做一个小的用户管理系统,由于重点在学习SpringMVC,这里我们就不用数据库了. 该小系统实现的功能是:1.登录,不做用户名密码的正确性判断,任何用户名+密码都可以成 ...

  9. mysql 控制台环境下查询中文数据乱码,插入、更新中文数据不成功

    mysql 控制台环境下查询中文数据乱码,插入.更新中文数据不成功         登录mysql密码是加入编码参数--default-character-set,中文用gbk mysql -uroo ...

  10. mysql 海量数据删除

    百度知道 - mysql删除海量数据   MySQL 数据库删除大批量数据的优化     看到这儿的话,最后看下这篇文章,对于操作海量数据的sql深入分析 cnblogs - 深度分析DROP,TRU ...