r squared
multiple r squared
adjusted r squared
http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html
Goodness-of-Fit Statistics
Sum of Squares Due to Error
This statistic measures the total deviation of the response values from the fit to the response values. It is also called the summed square of residuals and is usually labelled as SSE.
- SSE = Sum
(i=1 to n)
- {
wi
- (
yi - fi
- )
2
- }
Here yi is the observed data value and fi is the predicted value from the fit. wi is the weighting applied to each data point, usually wi = 1.
A value closer to 0 indicates that the model has a smaller random error component, and that the fit will be more useful for prediction.
R-Square
This statistic measures how successful the fit is in explaining the variation of the data. Put another way, R-square is the square of the correlation between the response values and the predicted response values. It is also called the square of the multiple correlation coefficient and the coefficient of multiple determination.
R-square is defined as
- R-square = 1 - [Sum
(i=1 to n)
- {
wi
- (
yi - fi
- )
2
- }] /[Sum
(i=1 to n)
- {
wi
- (
yi - yav
- )
2
- }] = 1 - SSE/SST
Here fi is the predicted value from the fit, yav is the mean of the observed data yi is the observed data value. wi is the weighting applied to each data point, usually wi=1. SSE is the sum of squares due to error and SST is the total sum of squares.
R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater proportion of variance is accounted for by the model. For example, an R-square value of 0.8234 means that the fit explains 82.34% of the total variation in the data about the average.
If you increase the number of fitted coefficients in your model, R-square will increase although the fit may not improve in a practical sense. To avoid this situation, you should use the degrees of freedom adjusted R-square statistic described below.
Note that it is possible to get a negative R-square for equations that do not contain a constant term. Because R-square is defined as the proportion of variance explained by the fit, if the fit is actually worse than just fitting a horizontal line then R-square is negative. In this case, R-square cannot be interpreted as the square of a correlation. Such situations indicate that a constant term should be added to the model.
Degrees of Freedom Adjusted R-Square
This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees of freedom. The residual degrees of freedom is defined as the number of response values nminus the number of fitted coefficients m estimated from the response values.
v = n-m
v indicates the number of independent pieces of information involving the n data points that are required to calculate the sum of squares. Note that if parameters are bounded and one or more of the estimates are at their bounds, then those estimates are regarded as fixed. The degrees of freedom is increased by the number of such parameters.
The adjusted R-square statistic is generally the best indicator of the fit quality when you compare two models that are nested – that is, a series of models each of which adds additional coefficients to the previous model.
- adjusted R-square = 1 - SSE(
n
- -1)/SST(
v
- )
The adjusted R-square statistic can take on any value less than or equal to 1, with a value closer to 1 indicating a better fit. Negative values can occur when the model contains terms that do not help to predict the response.
Root Mean Squared Error
This statistic is also known as the fit standard error and the standard error of the regression. It is an estimate of the standard deviation of the random component in the data, and is defined as
- RMSE =
s
- = (MSE)
½
where MSE is the mean square error or the residual mean square
- MSE=SSE/
v
Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for prediction.
r squared的更多相关文章
- 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)
一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...
- 线性函数拟合R语言示例
线性函数拟合(y=a+bx) 1. R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, ...
- R语言︱非结构化数据处理神器——rlist包
本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者. 近年来,非关系型数据逐渐获得了更广泛的关注和使用.下面分别列举 ...
- R语言命令汇总
> qqplot(spear,fastrankweight)> qqplot(spear,fastrankweight,main="title")> qqplot ...
- R ggplot2 线性回归
摘自 http://f.dataguru.cn/thread-278300-1-1.html library(ggplot2) x=1:10y=rnorm(10)a=data.frame(x= x, ...
- r语言与dataframe
什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表 ...
- R语言学习笔记(二十四):plyr包的用法
plyr 这个包,提供了一组规范的数据结构转换形式. Input/Output list data frame array list llply() ldply() laply() data fram ...
- a note of R software write Function
Functionals “To become significantly more reliable, code must become more transparent. In particular ...
- Advanced R之构造子集
转发请声明出处:http://www.cnblogs.com/lizichao/p/4794733.html 构造子集 R构造子集的操作功能强大而且速度快.精通构造子集者可以用简洁的方式表达复杂的操作 ...
随机推荐
- SEO总结(一)
- LeetCode OJ——Two Sum
http://oj.leetcode.com/problems/two-sum/ 求是否存在两个数的和为target,暴力法,两层循环 #include <iostream> #inclu ...
- PL/SQL Developer工具包和InstantClient连接Oracle 11g数据库
一.前言 PLSQL Developer是Oracle数据库开发工具,很牛也很好用,PLSQL Developer功能很强大,可以做为集成调试器,有SQL窗口,命令窗口,对象浏览器和性能优化等功能. ...
- 洛谷—— P2895 [USACO08FEB]流星雨Meteor Shower
P2895 [USACO08FEB]流星雨Meteor Shower 题目描述 Bessie hears that an extraordinary meteor shower is coming; ...
- 深入理解Thread构造函数
上一篇快速认识线程 本文参考汪文君著:Java高并发编程详解. 1.线程的命名 在构造现成的时候可以为线程起一个名字.但是我们如果不给线程起名字,那线程会有一个怎样的命名呢? 这里我们看一下Threa ...
- 从源码解析 Spring JDBC 异常抽象
初入学习 JDBC 操作数据库,想必大家都写过下面的代码: 数据库为:H2 如果需要处理特定 SQL 异常,比如 SQL 语句错误,这个时候我们应该怎么办? 查看 SQLException 源码,我们 ...
- netty-类图对比
- Ubuntu -- 下如何查看CPU信息, 包括位数和多核信息
from: http://hi.baidu.com/sdusoul/blog/item/76f349508f74fb6e843524eb.html 查看当前操作系统内核信息# uname -a Lin ...
- 七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC 【转】
http://www.cnblogs.com/powertoolsteam/p/MVC_one.html 系列文章 七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC 七天学会A ...
- Linux中的热键[Tab] [Ctrl]-c [Ctrl]-d
Tab键:命令或者文件补全.可以避免很多的输入错误 1. 按一次,文件或命令补全 2. 按两次,会列举出以按键前的字母为首的所有命令或者文件 Ctrl+C:中断目前程序 Ctrl+D:键盘输入结束.可 ...