r squared
multiple r squared
adjusted r squared
http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html
Goodness-of-Fit Statistics
Sum of Squares Due to Error
This statistic measures the total deviation of the response values from the fit to the response values. It is also called the summed square of residuals and is usually labelled as SSE.
- SSE = Sum
(i=1 to n)
- {
wi
- (
yi - fi
- )
2
- }
Here yi is the observed data value and fi is the predicted value from the fit. wi is the weighting applied to each data point, usually wi = 1.
A value closer to 0 indicates that the model has a smaller random error component, and that the fit will be more useful for prediction.
R-Square
This statistic measures how successful the fit is in explaining the variation of the data. Put another way, R-square is the square of the correlation between the response values and the predicted response values. It is also called the square of the multiple correlation coefficient and the coefficient of multiple determination.
R-square is defined as
- R-square = 1 - [Sum
(i=1 to n)
- {
wi
- (
yi - fi
- )
2
- }] /[Sum
(i=1 to n)
- {
wi
- (
yi - yav
- )
2
- }] = 1 - SSE/SST
Here fi is the predicted value from the fit, yav is the mean of the observed data yi is the observed data value. wi is the weighting applied to each data point, usually wi=1. SSE is the sum of squares due to error and SST is the total sum of squares.
R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater proportion of variance is accounted for by the model. For example, an R-square value of 0.8234 means that the fit explains 82.34% of the total variation in the data about the average.
If you increase the number of fitted coefficients in your model, R-square will increase although the fit may not improve in a practical sense. To avoid this situation, you should use the degrees of freedom adjusted R-square statistic described below.
Note that it is possible to get a negative R-square for equations that do not contain a constant term. Because R-square is defined as the proportion of variance explained by the fit, if the fit is actually worse than just fitting a horizontal line then R-square is negative. In this case, R-square cannot be interpreted as the square of a correlation. Such situations indicate that a constant term should be added to the model.
Degrees of Freedom Adjusted R-Square
This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees of freedom. The residual degrees of freedom is defined as the number of response values nminus the number of fitted coefficients m estimated from the response values.
v = n-m
v indicates the number of independent pieces of information involving the n data points that are required to calculate the sum of squares. Note that if parameters are bounded and one or more of the estimates are at their bounds, then those estimates are regarded as fixed. The degrees of freedom is increased by the number of such parameters.
The adjusted R-square statistic is generally the best indicator of the fit quality when you compare two models that are nested – that is, a series of models each of which adds additional coefficients to the previous model.
- adjusted R-square = 1 - SSE(
n
- -1)/SST(
v
- )
The adjusted R-square statistic can take on any value less than or equal to 1, with a value closer to 1 indicating a better fit. Negative values can occur when the model contains terms that do not help to predict the response.
Root Mean Squared Error
This statistic is also known as the fit standard error and the standard error of the regression. It is an estimate of the standard deviation of the random component in the data, and is defined as
- RMSE =
s
- = (MSE)
½
where MSE is the mean square error or the residual mean square
- MSE=SSE/
v
Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for prediction.
r squared的更多相关文章
- 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)
一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...
- 线性函数拟合R语言示例
线性函数拟合(y=a+bx) 1. R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, ...
- R语言︱非结构化数据处理神器——rlist包
本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者. 近年来,非关系型数据逐渐获得了更广泛的关注和使用.下面分别列举 ...
- R语言命令汇总
> qqplot(spear,fastrankweight)> qqplot(spear,fastrankweight,main="title")> qqplot ...
- R ggplot2 线性回归
摘自 http://f.dataguru.cn/thread-278300-1-1.html library(ggplot2) x=1:10y=rnorm(10)a=data.frame(x= x, ...
- r语言与dataframe
什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表 ...
- R语言学习笔记(二十四):plyr包的用法
plyr 这个包,提供了一组规范的数据结构转换形式. Input/Output list data frame array list llply() ldply() laply() data fram ...
- a note of R software write Function
Functionals “To become significantly more reliable, code must become more transparent. In particular ...
- Advanced R之构造子集
转发请声明出处:http://www.cnblogs.com/lizichao/p/4794733.html 构造子集 R构造子集的操作功能强大而且速度快.精通构造子集者可以用简洁的方式表达复杂的操作 ...
随机推荐
- gzip: stdin: unexpected end of file tar: 归档文件中异常的 EOF
gzip: stdin: unexpected end of file tar: 归档文件中异常的 EOF 问题描述: 使用tar命令解压文件时,报错: gzip: stdin: unexpected ...
- awk数组详解、实战
1.其它编程语言数组的下标一般从0开始,awk中数组下标默认从1开始,也可以从0开始设置: awk 'BEGIN{huluwa[0]="大娃";huluwa[1]="二娃 ...
- 为VLC增加在线字幕插件VLSub
VLC的在在线字幕插件VLSub,官网:https://github.com/exebetche/vlsub. 原理是通过搜索全球最大的字幕网站https://www.opensubtitles.or ...
- erlang debugger
http://erlang.org/doc/apps/debugger/debugger_chapter.html
- JavaScript世界万物诞生记
作者:manxisuo链接:https://zhuanlan.zhihu.com/p/22989691来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一. 无中生有 起 ...
- iOS -- xxxViewController进行pop时直接crash进main.m,EXC_BAD_ACCESS(code=1,address=0x20)
今天在调试程序时,遇到了奇怪的错误.我从主页跳进(push)一个ViewController时一切正常,但是返回主页(pop)时却crash了,直接跳进了main.m(EXC_BAD_ACCESS(c ...
- 谈oracle数据比对(DBMS_COMPARISON)
今天是2014-08-19,我今天收到csdn给我发的申请博客专家的邀请,自己感觉实在羞愧啊. 自从换了工作也一直没有精力在写点东西了.今天我一个同事,在群里贴出了一个数据比对的包(DBMS_COMP ...
- DevExpress.XtraGrid 【转】
http://www.cnblogs.com/zeroone/p/4574539.html DevExpress.XtraGrid控件使用 该控件类是一个表格控件,但是其具有很多方便而使用的功能,例如 ...
- css3 - 动态伪类
动态伪类分为以下几种: 1. hover(经过) 2. active(点击后) 3. focus(聚焦) - input专用 4. visited(访问后) 使用:
- CrtmpServer 接收推送视频流 注册流基本流程
今天研究了CrtmpServer 将客户端推动过来的视频流注册到服务的流程,记录下来,以备后用. 图1 注册前端视频流流程