TensorFlow 模型保存/载入
我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用。而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦。
一、基本方法
网上搜索tensorflow模型保存,搜到的大多是基本的方法。即
保存
- 定义变量
- 使用saver.save()方法保存
载入
- 定义变量
- 使用saver.restore()方法载入
保存代码
import tensorflow as tf
import numpy as np W = tf.Variable([[1,1,1],[2,2,2]],dtype = tf.float32,name='w')
b = tf.Variable([[0,1,2]],dtype = tf.float32,name='b') init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess,"save/model.ckpt")
载入代码如下
import tensorflow as tf
import numpy as np W = tf.Variable(tf.truncated_normal(shape=(2,3)),dtype = tf.float32,name='w')
b = tf.Variable(tf.truncated_normal(shape=(1,3)),dtype = tf.float32,name='b') saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,"save/model.ckpt")
这种方法不方便的在于,在使用模型的时候,必须把模型的结构重新定义一遍,然后载入对应名字的变量的值。但是很多时候我们都更希望能够读取一个文件然后就直接使用模型,而不是还要把模型重新定义一遍。所以就需要使用另一种方法。
二、不需重新定义网络结构的方法
tf.train.import_meta_graph
import_meta_graph(
meta_graph_or_file,
clear_devices=False,
import_scope=None,
**kwargs
)
这个方法可以从文件中将保存的graph的所有节点加载到当前的default graph中,并返回一个saver。也就是说,我们在保存的时候,除了将变量的值保存下来,其实还有将对应graph中的各种节点保存下来,所以模型的结构也同样被保存下来了。
比如我们想要保存计算最后预测结果的y,则应该在训练阶段将它添加到collection中。具体代码如下
保存模型代码
### 定义模型
input_x = tf.placeholder(tf.float32, shape=(None, in_dim), name='input_x')
input_y = tf.placeholder(tf.float32, shape=(None, out_dim), name='input_y') w1 = tf.Variable(tf.truncated_normal([in_dim, h1_dim], stddev=0.1), name='w1')
b1 = tf.Variable(tf.zeros([h1_dim]), name='b1')
w2 = tf.Variable(tf.zeros([h1_dim, out_dim]), name='w2')
b2 = tf.Variable(tf.zeros([out_dim]), name='b2')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
hidden1 = tf.nn.relu(tf.matmul(self.input_x, w1) + b1)
hidden1_drop = tf.nn.dropout(hidden1, self.keep_prob)
### 定义预测目标
y = tf.nn.softmax(tf.matmul(hidden1_drop, w2) + b2)
# 创建saver
saver = tf.train.Saver(...variables...)
# 假如需要保存y,以便在预测时使用
tf.add_to_collection('pred_network', y)
sess = tf.Session()
for step in xrange(1000000):
sess.run(train_op)
if step % 1000 == 0:
# 保存checkpoint, 同时也默认导出一个meta_graph
# graph名为'my-model-{global_step}.meta'.
saver.save(sess, 'my-model', global_step=step)
载入模型
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
new_saver.restore(sess, 'my-save-dir/my-model-10000')
# tf.get_collection() 返回一个list. 但是这里只要第一个参数即可
y = tf.get_collection('pred_network')[0] graph = tf.get_default_graph() # 因为y中有placeholder,所以sess.run(y)的时候还需要用实际待预测的样本以及相应的参数来填充这些placeholder,而这些需要通过graph的get_operation_by_name方法来获取。
input_x = graph.get_operation_by_name('input_x').outputs[0]
keep_prob = graph.get_operation_by_name('keep_prob').outputs[0] # 使用y进行预测
sess.run(y, feed_dict={input_x:...., keep_prob:1.0})
这里有两点需要注意的:
一、 saver.restore()时填的文件名,因为在saver.save的时候,每个checkpoint会保存三个文件,如 my-model-10000.meta, my-model-10000.index, my-model-10000.data-00000-of-00001
在import_meta_graph时填的就是meta文件名,我们知道权值都保存在my-model-10000.data-00000-of-00001这个文件中,但是如果在restore方法中填这个文件名,就会报错,应该填的是前缀,这个前缀可以使用tf.train.latest_checkpoint(checkpoint_dir)这个方法获取。
二、模型的y中有用到placeholder,在sess.run()的时候肯定要feed对应的数据,因此还要根据具体placeholder的名字,从graph中使用get_operation_by_name方法获取。
TensorFlow 模型保存/载入的更多相关文章
- TensorFlow模型保存和加载方法
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...
- TensorFlow模型保存和提取方法
一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将Tens ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- Tensorflow模型保存与加载
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...
- Tensorflow模型保存与载入
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...
- 10 Tensorflow模型保存与读取
我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np i ...
- 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)
该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...
- 转 tensorflow模型保存 与 加载
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...
- tensorflow 模型保存后的加载路径问题
import tensorflow as tf #保存模型 saver = tf.train.Saver() saver.save(sess, "e://code//python//test ...
随机推荐
- 利用ES6中的Proxy和Reflect 实现简单的双向数据绑定
利用ES6中的Proxy (代理) 和 Reflect 实现一个简单的双向数据绑定demo. 好像vue3也把 obj.defineProperty() 换成了Proxy+Reflect. 话不多说 ...
- [haoi2014]穿越封锁线
这题需要注意的一点是射线法需要考虑边界,而且题目对边界的限制极为严格. dcmp(v[i%n].x-x)<=0&&dcmp(v[(i+1)%n].x-x)>0 dcmp(v ...
- 最简单ajax,$.post()用法
最简单的ajax,$.post()用法 $.post("action.php",{'email':$('#email').val(),'address':$('#address') ...
- codeforces B. Bear and Strings 解题报告
题目链接:http://codeforces.com/problemset/problem/385/B 题目意思:给定一条只有小写英文组成的序列,需要找出至少包含一个“bear”的单词的子序列个数.注 ...
- 配置JDK和Tomcat环境变量(转)
1.安装JDK 安装好JDK后,再配置JDK的环境变量:在“我的电脑”上点右键—>“属性”—>“高级”—> “环境变量(N)”. 新建系统变量JAVA_HOME:C:/Program ...
- HihoCoder 1488 : 排队接水(莫队+树状数组)
描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...
- This file requires _WIN32_WINNT to be #defined at least to 0x0403. Value 0x0501 or higher is recommended
VS2005转换成VS2010时出现的问题: This file requires _WIN32_WINNT to be #defined at least to 0x0403. Value 0x05 ...
- GC及其作用
Java GC 是垃圾回收机制,自动内存管理和垃圾清扫机制,释放内存中的资源和垃圾
- Spring创建对象的三种方式以及创建时间
创建对象的三种方式: 1.采用默认的构造函数创建 2.采用静态工厂方法 1.写一个静态工厂方法类 public class HelloWorldFactory { public static Hell ...
- Unity4.0配置
关于Unity4.0的使用: 一 安装Unity 在程序包管理器控制台输入命令:Istall-Pckage unity.mvc安装后会在App_Start中生成UnityConfig.cs 和Unit ...