Codeforces Round #388 (Div. 2) D
There are n people taking part in auction today. The rules of auction are classical. There were n bids made, though it's not guaranteed they were from different people. It might happen that some people made no bids at all.
Each bid is define by two integers (ai, bi), where ai is the index of the person, who made this bid and bi is its size. Bids are given in chronological order, meaning bi < bi + 1 for all i < n. Moreover, participant never makes two bids in a row (no one updates his own bid), i.e.ai ≠ ai + 1 for all i < n.
Now you are curious with the following question: who (and which bid) will win the auction if some participants were absent? Consider that if someone was absent, all his bids are just removed and no new bids are added.
Note, that if during this imaginary exclusion of some participants it happens that some of the remaining participants makes a bid twice (or more times) in a row, only first of these bids is counted. For better understanding take a look at the samples.
You have several questions in your mind, compute the answer for each of them.
The first line of the input contains an integer n (1 ≤ n ≤ 200 000) — the number of participants and bids.
Each of the following n lines contains two integers ai and bi (1 ≤ ai ≤ n, 1 ≤ bi ≤ 109, bi < bi + 1) — the number of participant who made the i-th bid and the size of this bid.
Next line contains an integer q (1 ≤ q ≤ 200 000) — the number of question you have in mind.
Each of next q lines contains an integer k (1 ≤ k ≤ n), followed by k integers lj (1 ≤ lj ≤ n) — the number of people who are not coming in this question and their indices. It is guarenteed that lj values are different for a single question.
It's guaranteed that the sum of k over all question won't exceed 200 000.
For each question print two integer — the index of the winner and the size of the winning bid. If there is no winner (there are no remaining bids at all), print two zeroes.
6
1 10
2 100
3 1000
1 10000
2 100000
3 1000000
3
1 3
2 2 3
2 1 2
2 100000
1 10
3 1000
3
1 10
2 100
1 1000
2
2 1 2
2 2 3
0 0
1 10
Consider the first sample:
- In the first question participant number 3 is absent so the sequence of bids looks as follows:
- 1 10
- 2 100
- 1 10 000
- 2 100 000
Participant number 2 wins with the bid 100 000.
- In the second question participants 2 and 3 are absent, so the sequence of bids looks:
- 1 10
- 1 10 000
The winner is, of course, participant number 1 but the winning bid is 10 instead of 10 000 as no one will ever increase his own bid (in this problem).
- In the third question participants 1 and 2 are absent and the sequence is:
- 3 1 000
- 3 1 000 000
The winner is participant 3 with the bid 1 000.
题意:有个拍卖会,然后出价(出价貌似是上升的),最后说有几个出价是失效的,问最后是哪个价格竞拍到了
1 10
2 100
3 1000
1 10000
2 100000
3 1000000
比如这个,我们知道每人两次出价(价格上升),最后3出价失效,最后保留1 2,2的出价最高,输出2 10000
解法:
1 模拟
2 没有剩下就是的0 0,剩下一个出价人就是取最高值
3 如果留下多个,最后一个出价人的价格和倒数第二个出价比较,找一个比倒数第二个出价最高的还高的出价就行(不一定要最高),如果找不到就取当前的最大值
4 说是数据结构,拿现成的工具套。。
#include<bits/stdc++.h>
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
using namespace std;
set<pair<int,int>>Se;
vector<int>Ve[];
int flag[];
int query[];
int main(){
int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
int a,b;
scanf("%d%d",&a,&b);
Ve[a].push_back(b);
flag[a]=;
}
for(int i=;i<=n;i++){
if(flag[i]){
Se.insert({Ve[i][Ve[i].size()-],i});
}
}
int m;
scanf("%d",&m);
while(m--){
int num;
scanf("%d",&num);
for(int i=;i<=num;i++){
scanf("%d",&query[i]);
if(flag[query[i]]==) continue;
Se.erase({Ve[query[i]][Ve[query[i]].size()-],query[i]});
}
if(Se.size()==){
printf("0 0\n");
}else if(Se.size()==){
printf("%d %d\n",Se.begin()->second,Ve[Se.begin()->second][]);
}else{
auto k = --Se.end();
int t1 = k->first, t2 = k->second;
Se.erase({t1, t2});
auto l = --Se.end();
printf("%d %d\n", k->second, *upper_bound(Ve[t2].begin(), Ve[t2].end(), l->first));
Se.insert({t1, t2});
}
for(int i=;i<=num;i++){
if(flag[query[i]]){
Se.insert({Ve[query[i]][Ve[query[i]].size()-],query[i]});
}
}
}
return ;
}
Codeforces Round #388 (Div. 2) D的更多相关文章
- Codeforces Round #388 (Div. 2)
# Name A Bachgold Problem standard input/output 1 s, 256 MB x6036 B Parallelogram is Back s ...
- Codeforces Round #388 (Div. 2) - C
题目链接:http://codeforces.com/contest/749/problem/C 题意:给定一个长度为n的D/R序列,代表每个人的派别,然后进行发表意见,顺序是从1到n.每个人到他的回 ...
- Codeforces Round #388 (Div. 2) - B
题目链接:http://codeforces.com/contest/749/problem/B 题意:给定平行四边形的3个点,输出所有可能的第四个点. 思路:枚举任意两个点形成的直线,然后利用这两个 ...
- Codeforces Round #388 (Div. 2) - A
题目链接:http://codeforces.com/contest/749/problem/A 题意:给定一个数n,求把n分解成尽量多的素数相加.输入素数个数和具体方案. 思路:因为要尽量多的素数, ...
- Codeforces Round #388 (Div. 2) A,B,C,D
A. Bachgold Problem time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #388 (Div. 2) 749E(巧妙的概率dp思想)
题目大意 给定一个1到n的排列,然后随机选取一个区间,让这个区间内的数随机改变顺序,问这样的一次操作后,该排列的逆序数的期望是多少 首先,一个随机的长度为len的排列的逆序数是(len)*(len-1 ...
- Codeforces Round #388 (Div. 2) A+B+C!
A. Bachgold Problem 任何一个数都可以由1和2组成,由于n是大于等于2的,也就是可以由2和3组成.要求最多的素数即素数越小越好,很明显2越多越好,如果n为奇数则再输出一个3即可. i ...
- Codeforces Round #388 (Div. 2) C. Voting
题意:有n个人,每个人要么是属于D派要么就是R派的.从编号1开始按顺序,每个人都有一次机会可以剔除其他任何一个人(被剔除的人就不在序列中也就失去了剔除其他人的机会了):当轮完一遍后就再次从头从仅存的人 ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
随机推荐
- PHP 导出office打开乱码
Response.AddHeader("Content-Disposition", "attachment; filename=" + file.Name); ...
- PS 图像滤镜— — USM 锐化
这个算法的原理很简单,就是先用高斯模糊获取图像的低频信息,然后用原图减去高斯模糊之后的图,得到图像的高频信息,再将原图与高频信息融合,进一步增强原图的高频信息,看起来,图像的边缘显得特别的sharp. ...
- TCPDUMP 使用详情
第一种是关于类型的关键字,主要包括host,net,port, 例如 host 210.27.48.2,指明 210.27.48.2是一台主机,net 202.0.0.0 指明 202.0.0.0是一 ...
- [ZJOI 2012] 网络
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2816 [算法] 对每种颜色的边建一棵LCT , 维护联通性即可 时间复杂度 : O( ...
- C++之运算符重载(前置++和后置++)
今天在阅读<google c++ 编程风格>的文档的时候,5.10. 前置自增和自减:有一句话引起了我的注意: 对于迭代器和其他模板对象使用前缀形式 (++i) 的自增, 自减运算符.,理 ...
- Building Objective-C static libraries with categories(ObjC、all_load、force_load)
https://developer.apple.com/library/mac/qa/qa1490/_index.html 之所以使用该标志,和Objective-C的一个重要特性:类别(cat ...
- Redis GEO 特性在 LBS 中的应用总结
什么是LBS LBS(Location Based Service),基于位置的服务. Redis和GEO Redis 是最热门的 nosql 数据库之一,它的最大特点就是快.所以在 LBS 这种需要 ...
- Ubuntu 安装 texlive
下载网站: http://tug.org/texlive/acquire-netinstall.html 此处解释texlive配置PATH gedit ~/.bashrc 在文件最后添加以下内容, ...
- initWithFrame 与 initWithCoder 、awakeFromNib 的方法理解笔记
1. initWithFrame方法是什么? initWithFrame方法用来初始化并返回一个新的视图对象,根据指定的CGRect(尺寸). 当然,其他UI对象,也有initWithFrame方法, ...
- httpclient:实现有验证码的模拟登陆
//1.这种方式是先把验证码的图片下载到本地.并且根据网页解析获得token值//2.手动在控制台输入验证码//3.因为验证码图片已经下载下来,后面就可以使用图像文字识别package DoubanS ...