Modified Least Square Method and Ransan Method to Fit Circle from Data
In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to fit circle, so i read some paper, and write a function to do it. The paper it refer to is "A Few Methods for Fitting Circles to Data".
Also when there is a lot of noise in the data, need to find a way to exclude the noise data and get a more accuracy result.
There are two methods, one is iterate method, first use all the data to fit a model, then find the points exceed the error tolerance to the model, excude them and fit again. Until reach iteration times limit or all the data is in error tolerance.
Another method is ransac method, it has detailed introduction in paper "Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography".
// This function is based on Modified Least Square Methods from Paper
// "A Few Methods for Fitting Circles to Data".
cv::RotatedRect FitCircle(const std::vector<cv::Point2f> &vecPoints)
{
cv::RotatedRect rotatedRect;
if ( vecPoints.size() < )
return rotatedRect; double Sx = ., Sy = ., Sx2 = ., Sy2 = ., Sxy = ., Sx3 = ., Sy3 = ., Sxy2 = ., Syx2 = .;
for ( const auto &point : vecPoints ) {
Sx += point.x;
Sy += point.y;
Sx2 += point.x * point.x;
Sy2 += point.y * point.y;
Sxy += point.x * point.y;
Sx3 += point.x * point.x * point.x;
Sy3 += point.y * point.y * point.y;
Sxy2 += point.x * point.y * point.y;
Syx2 += point.y * point.x * point.x;
} double A, B, C, D, E;
int n = vecPoints.size();
A = n * Sx2 - Sx * Sx;
B = n * Sxy - Sx * Sy;
C = n * Sy2 - Sy * Sy;
D = 0.5 * ( n * Sxy2 - Sx * Sy2 + n * Sx3 - Sx * Sx2 );
E = 0.5 * ( n * Syx2 - Sy * Sx2 + n * Sy3 - Sy * Sy2 ); auto AC_B2 = ( A * C - B * B); // The variable name is from AC - B^2
auto am = ( D * C - B * E ) / AC_B2;
auto bm = ( A * E - B * D ) / AC_B2; double rSqureSum = .f;
for ( const auto &point : vecPoints )
{
rSqureSum += sqrt ( ( point.x - am ) * ( point.x - am ) + ( point.y - bm) * ( point.y - bm) );
}
float r = static_cast<float>( rSqureSum / n );
rotatedRect.center.x = static_cast<float>( am );
rotatedRect.center.y = static_cast<float>( bm );
rotatedRect.size = cv::Size2f( .f * r, .f * r ); return rotatedRect;
} std::vector<size_t> findPointOverTol( const std::vector<cv::Point2f> &vecPoints, const cv::RotatedRect &rotatedRect, int method, float tolerance )
{
std::vector<size_t> vecResult;
for ( size_t i = ;i < vecPoints.size(); ++ i ) {
cv::Point2f point = vecPoints[i];
auto disToCtr = sqrt( ( point.x - rotatedRect.center.x) * (point.x - rotatedRect.center.x) + ( point.y - rotatedRect.center.y) * ( point.y - rotatedRect.center.y ) );
auto err = disToCtr - rotatedRect.size.width / ;
if ( method == && fabs ( err ) > tolerance ) {
vecResult.push_back(i);
}else if ( method == && err > tolerance ) {
vecResult.push_back(i);
}else if ( method == && err < -tolerance ) {
vecResult.push_back(i);
}
}
return vecResult;
} //method 1 : Exclude all the points out of positive error tolerance and inside the negative error tolerance.
//method 2 : Exclude all the points out of positive error tolerance.
//method 3 : Exclude all the points inside the negative error tolerance.
cv::RotatedRect FitCircleIterate(const std::vector<cv::Point2f> &vecPoints, int method, float tolerance)
{
cv::RotatedRect rotatedRect;
if (vecPoints.size() < )
return rotatedRect; std::vector<cv::Point2f> vecLocalPoints;
for ( const auto &point : vecPoints ) {
vecLocalPoints.push_back ( point );
}
rotatedRect = FitCircle ( vecLocalPoints ); std::vector<size_t> overTolPoints = findPointOverTol ( vecLocalPoints, rotatedRect, method, tolerance );
int nIteratorNum = ;
while ( ! overTolPoints.empty() && nIteratorNum < ) {
for (auto it = overTolPoints.rbegin(); it != overTolPoints.rend(); ++ it)
vecLocalPoints.erase(vecLocalPoints.begin() + *it);
rotatedRect = FitCircle ( vecLocalPoints );
overTolPoints = findPointOverTol ( vecLocalPoints, rotatedRect, method, tolerance );
++ nIteratorNum;
}
return rotatedRect;
} std::vector<cv::Point2f> randomSelectPoints(const std::vector<cv::Point2f> &vecPoints, int needToSelect)
{
std::set<int> setResult;
std::vector<cv::Point2f> vecResultPoints; if ( (int)vecPoints.size() < needToSelect )
return vecResultPoints; while ((int)setResult.size() < needToSelect) {
int nValue = std::rand() % vecPoints.size();
setResult.insert(nValue);
}
for ( auto index : setResult )
vecResultPoints.push_back ( vecPoints[index] );
return vecResultPoints;
} std::vector<cv::Point2f> findPointsInTol( const std::vector<cv::Point2f> &vecPoints, const cv::RotatedRect &rotatedRect, float tolerance )
{
std::vector<cv::Point2f> vecResult;
for ( const auto &point : vecPoints ) {
auto disToCtr = sqrt( ( point.x - rotatedRect.center.x) * (point.x - rotatedRect.center.x) + ( point.y - rotatedRect.center.y) * ( point.y - rotatedRect.center.y ) );
auto err = disToCtr - rotatedRect.size.width / ;
if ( fabs ( err ) < tolerance ) {
vecResult.push_back(point);
}
}
return vecResult;
} /* The ransac algorithm is from paper "Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography".
* Given a model that requires a minimum of n data points to instantiate
* its free parameters, and a set of data points P such that the number of
* points in P is greater than n, randomly select a subset S1 of
* n data points from P and instantiate the model. Use the instantiated
* model M1 to determine the subset S1* of points in P that are within
* some error tolerance of M1. The set S1* is called the consensus set of
* S1.
* If g (S1*) is greater than some threshold t, which is a function of the
* estimate of the number of gross errors in P, use S1* to compute
* (possibly using least squares) a new model M1* and return.
* If g (S1*) is less than t, randomly select a new subset S2 and repeat the
* above process. If, after some predetermined number of trials, no
* consensus set with t or more members has been found, either solve the
* model with the largest consensus set found, or terminate in failure. */
cv::RotatedRect FitCircleRansac(const std::vector<cv::Point2f> &vecPoints, float tolerance, int maxRansacTime, int nFinishThreshold)
{
cv::RotatedRect fitResult;
if (vecPoints.size() < )
return fitResult; int nRansacTime = ;
const int RANSAC_CIRCLE_POINT = ;
size_t nMaxConsentNum = ; while ( nRansacTime < maxRansacTime ) {
std::vector<cv::Point2f> vecSelectedPoints = randomSelectPoints ( vecPoints, RANSAC_CIRCLE_POINT );
cv::RotatedRect rectReult = FitCircle ( vecSelectedPoints );
vecSelectedPoints = findPointsInTol ( vecPoints, rectReult, tolerance ); if ( vecSelectedPoints.size() >= (size_t)nFinishThreshold ) {
return FitCircle ( vecSelectedPoints );
}
else if ( vecSelectedPoints.size() > nMaxConsentNum )
{
fitResult = FitCircle ( vecSelectedPoints );
nMaxConsentNum = vecSelectedPoints.size();
}
++ nRansacTime;
} return fitResult;
} void TestFitCircle()
{
std::vector<cv::Point2f> vecPoints;
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(2.9f, 2.9f));
vecPoints.push_back(cv::Point2f(17.07f, 17.07f));
vecPoints.push_back(cv::Point2f(.f, .f));
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(, ));
vecPoints.push_back(cv::Point2f(, )); cv::RotatedRect rectResult;
rectResult = FitCircle(vecPoints); cout << " X, Y " << rectResult.center.x << ", " << rectResult.center.y << " r " << rectResult.size.width / . << endl; rectResult = FitCircleIterate ( vecPoints, , );
cout << "Iterator Result X, Y " << rectResult.center.x << ", " << rectResult.center.y << " r " << rectResult.size.width / . << endl; rectResult = FitCircleRansac ( vecPoints, , , );
cout << "Ransac Result X, Y " << rectResult.center.x << ", " << rectResult.center.y << " r " << rectResult.size.width / . << endl;
}
Modified Least Square Method and Ransan Method to Fit Circle from Data的更多相关文章
- 【Go入门教程5】面向对象(method、指针作为receiver、method继承、method重写)
前面两章我们介绍了函数和struct,那你是否想过函数当作struct的字段一样来处理呢?今天我们就讲解一下函数的另一种形态,带有接收者(receiver)的函数,我们称为method method ...
- 关于.ToList(): LINQ to Entities does not recognize the method ‘xxx’ method, and this method cannot be translated into a store expression.
LINQ to Entities works by translating LINQ queries to SQL queries, then executing the resulting quer ...
- java代码中init method和destroy method的三种使用方式
在java的实际开发过程中,我们可能常常需要使用到init method和destroy method,比如初始化一个对象(bean)后立即初始化(加载)一些数据,在销毁一个对象之前进行垃圾回收等等. ...
- Invalid character found in method name. HTTP method names must be tokens
o.apache.coyote.http11.Http11Processor : Error parsing HTTP request header Note: further occurrenc ...
- SpringBoot:Invalid character found in method name. HTTP method names must be tokens
问题背景 关于SpringBoot应用挂了很久之后,会发生Invalid character found in method name. HTTP method names must be token ...
- Day04 -玩弄Ruby的方法:instance method与class method
前情提要在第三天时,我们解说了如何在class里用include与extend,去使用module的method. Include is for adding methods to an instan ...
- tomcat 启动报错 Invalid character found in method name. HTTP method names must be tokens
解决:Invalid character found in method name. HTTP method names must be tokens 阿里云上弄了一个tomcat,经常半夜发送崩 ...
- [Python] Python 之 function, unbound method 和 bound method
首先看一下以下示例.(Python 2.7) #!/usr/bin/env python # -*- coding: utf-8 -*- class C(object): def foo(self): ...
- 【Go入门教程7】面向对象(method、指针作为receiver、method继承、method重写)
前面两章我们介绍了函数和struct,那你是否想过函数当作struct的字段一样来处理呢?今天我们就讲解一下函数的另一种形态,带有接收者(receiver)的函数,我们称为method method ...
随机推荐
- 警告:隐式声明与内建函数'exit'不兼容解决方案
警告:隐式声明与内建函数'exit'不兼容解决方案 #include <stdio.h> int main() { printf("hello world!/n"); ...
- Verilog HDL那些事_建模篇笔记(实验七:数码管电路驱动)
1.同步动态扫描 多个数码管的显示采用的是同步动态扫描方法,同步动态扫描指的是:行信号和列信号同步扫描,是一种并行操作. 2.数码管驱动电路实现思路 如果要求数码管显示我们想要的数字,首先需 ...
- PHP http 简单用户验证
<?php $valid_passwords = array ("user" => "password"); $valid_users = arra ...
- IOS开发之--NSPredicate
我把常用的NSPredicate使用场景整理了一下 官方参考: https://developer.apple.com/library/mac/#documentation/Cocoa/Refer ...
- NFinal中增加生成页面自动带入js和css
增加在WebCompiler.aspx页面中的application.CreateCompile(true);方法里. //写aspx页面的自动提示层 #region 插入js&css com ...
- TinyHTTP代码核心流程
TinyHTTPd是一个超轻量型Http Server,使用C语言开发,全部代码不到600行 研究HTTP服务器,为了更好的造轮子,看了TinyHTTPd代码,对逻辑处理画个简单流程图(不含底层)
- 好莱坞电影公司&系列电影
- 好莱坞6大发行公司: - Warner Bros(WB): <哈利·波特>, 黑客帝国, 蝙蝠侠, - New Line cinema新线(2008): 魔戒, 霍比特人, 尖峰时刻, ...
- ios启动载入启动图片
版本判断: 1.首先你要知道这个键值对的key:id key = (id)kCFBundleVersionKey; 2.同过本地的NSBundle取得当前的版本号. 3.在沙盒中取得对应的版本号. ...
- 如何在Visual Studio里面查看程序的汇编代码?
开发工具:Visual Studio 2015 1,在源代码中设置至少一个断点,目的让我们进入调试模式. 2,启动调试,当程序进入调试模式,停留在我们设定的断点处时候,使用快捷键"ALT+8 ...
- 多个Jdk版本(转)
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法 本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7. 安装 ...