题意:

     给你一个有向图,每条边上都有每一时刻的最大流量,有k个人在点0,他们要去点n-1,问你最晚到达的那个人最快要多久。

思路:

     这个题目做了很多次,用过费用流,也用过最大流,结果都不行,怎么说的,这道题目用该是借助费用流的找新路径去枚举,可以说是费用流变形吧,首先我们一定要明白一点,就是时间的影响,单纯的最大流如果在时间的基础上考虑没什么意义,而费用流呢,我们想象一下,如果把时间设成费用那么我们就可以吧流量和时间结合起来了,在费用流的过程中我们要知道,他每一次都是根据最短路去找新的路径的,也就是说路径在费用上来说是递增的(流量不一定),那么我们就可以根据这个特点来枚举一那些路径来过人,要明白,如果起点到终点有两条边,一条很近,一条很远,有可能大家都走近的路径(宁可排队走),也不走远的(所以直接最大流是错了),那么我们就可以枚举路径了,路径可以直接用费用流每次的路径,因为时间递增的,对于每一次我们能过的人是多少呢?这个地方很关键,对于每一条路径来说,如果当前的路径a距离是10,流量是15,那么当时间大于10的时候,每过一个时间单位,路径a都可以再过15个人,所以当前的时间段的总人数是

之前的总人数+(当前长度-上一个长度)* 上一个的总流量 + 当前流量

那么如果现在当前这一部之前的所有路径当路径要花费的时间是多少呢

now = 当前长度+剩余的路径长度/当前总流量  向上取整

这样比较now和ans更新答案就行了,还有一个地方要明确,就是当总人数超过全图的最大流的时候答案就是 费用流中最长的路径 + 总人数/全图最大流 向上取整,这个地方不用特判,上面的想法里面包括在这里,说了只是为了便于理解。


#include<stdio.h>
#include<string.h>
#include<queue>
#include<math.h> #define N_node 2500 + 50
#define N_edge 10000 + 100
#define INF 2000000000

using namespace
std; typedef struct
{
int
from ,to ,next ,cost ,flow;
}
STAR; STAR E[N_edge];
int
list[N_node] ,tot;
int
mer[N_edge] ,s_x[N_node]; void add(int a ,int b ,int c ,int d)
{

E[++tot].from = a;
E[tot].to = b;
E[tot].cost = c;
E[tot].flow = d;
E[tot].next = list[a];
list[a] = tot;
} bool
spfa(int s ,int t ,int n)
{
int
mark[N_node] = {0};
for(int
i = 0 ;i <= n ;i ++)
s_x[i] = INF;
queue<int>q;
q.push(s);
mark[s] = 1 ,s_x[s] = 0;
memset(mer ,255 ,sizeof(mer));
while(!
q.empty())
{
int
xin ,tou;
tou = q.front();
q.pop();
mark[tou] = 0;
for(int
k = list[tou] ;k ;k = E[k].next)
{

xin = E[k].to;
if(
s_x[xin] > s_x[tou] + E[k].cost && E[k].flow)
{

s_x[xin] = s_x[tou] + E[k].cost;
mer[xin] = k;
if(!
mark[xin])
{

mark[xin] = 1;
q.push(xin);
}
}
}
}
return
mer[t] != -1;
} int
M_C_Flow(int s ,int t ,int n ,int k)
{
if(!
k) return 0;
int
minflow ,sum_peo = k ,now_peo = 0 ,list_time = 0 ,ans = INF;
while(
spfa(s ,t ,n))
{

minflow = INF;
for(int
i = mer[t] ;i + 1 ;i = mer[E[i].from])
if(
minflow > E[i].flow) minflow = E[i].flow;
for(int
i = mer[t] ;i + 1 ;i = mer[E[i].from])
E[i].flow -= minflow ,E[i^1].flow += minflow; sum_peo -= (s_x[t] - list_time) * now_peo + minflow;
list_time = s_x[t] ,now_peo += minflow;
int
now = s_x[t] + (int)ceil((1.0 * (sum_peo < 0 ? 0 : sum_peo ))/now_peo);
if(
ans > now) ans = now;
if(
sum_peo < 1) break;
}
return
ans;
} int main ()
{
int
n ,m ,k ,i ,a ,b ,c;
while(~
scanf("%d %d %d" ,&n ,&m ,&k))
{

memset(list ,0 ,sizeof(list));
tot = 1;
for(
i = 1 ;i <= m ;i ++)
{

scanf("%d %d %d" ,&a ,&b ,&c);
a ++ ,b ++;
add(a ,b ,1 ,c) ,add(b ,a ,-1 ,0);
}
int
ans = M_C_Flow(1 ,n ,n ,k);
ans == INF ? puts("No solution"):printf("%d\n" ,ans);
}
return
0;
}

hdu4807枚举费用流的更多相关文章

  1. HDU4807 Lunch Time(费用流变种)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4807 Description The campus of Nanjing Universit ...

  2. ACdream 1128 Maze(费用流)

    题目链接:http://acdream.info/problem?pid=1128 Problem Description wuyiqi陷入了一个迷宫中,这个迷宫是由N*M个格子组成的矩阵.每个格子上 ...

  3. CF 321B Ciel and Duel(费用流)

    题目链接:http://codeforces.com/problemset/problem/321/B 题意:两个人,分别有n.m张牌.每张牌有两个属性类型和能力,类型为攻击或者防守.B的m张牌的属性 ...

  4. 【UVALive - 5131】Chips Challenge(上下界循环费用流)

    Description A prominent microprocessor company has enlisted your help to lay out some interchangeabl ...

  5. Codeforces Gym 101190M Mole Tunnels - 费用流

    题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\rig ...

  6. [UOJ455][UER #8]雪灾与外卖——堆+模拟费用流

    题目链接: [UOJ455]雪灾与外卖 题目描述:有$n$个送餐员(坐标为$x_{i}$)及$m$个餐厅(坐标为$y_{i}$,权值为$w_{i}$),每个送餐员需要前往一个餐厅,每个餐厅只能容纳$c ...

  7. BZOJ2040[2009国家集训队]拯救Protoss的故乡——模拟费用流+线段树+树链剖分

    题目描述 在星历2012年,星灵英雄Zeratul预测到他所在的Aiur行星在M天后会发生持续性暴雨灾害,尤其是他们的首都.而Zeratul作为星灵族的英雄,当然是要尽自己最大的努力帮助星灵族渡过这场 ...

  8. BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)

    BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...

  9. Bzoj2673 3961: [WF2011]Chips Challenge 费用流

    国际惯例题面:如果我们枚举放几个零件的话,第二个限制很容易解决,但是第一个怎么办?(好的,这么建图不可做)考虑我们枚举每行每列最多放几个零件t,然后计算零件总数sum.这样如果可行的话,则有t*B&l ...

随机推荐

  1. 快速电路仿真器(FastSPICE)中的高性能矩阵向量运算实现

    今年10-11月份参加了EDA2020(第二届)集成电路EDA设计精英挑战赛,通过了初赛,并参加了总决赛,最后拿了一个三等奖,虽然成绩不是很好,但是想把自己做的分享一下,我所做的题目是概伦电子出的F题 ...

  2. 2020年12月-第02阶段-前端基础-Day06

    CSS Day06 定位(position) 理解 能说出为什么要用定位 能说出定位的4种分类 能说出四种定位的各自特点 能说出我们为什么常用子绝父相布局 应用 能写出淘宝轮播图布局 1. CSS 布 ...

  3. 大牛带你学会java类加载机制,不要错过,值得收藏!

    很多人对java类加载机制都是非常抗拒的,因为这个太难理解了,但是我们作为一名优秀的java工程师,还是要把java类加载机制研究和学习明白的,因为这对于我们在以后的工作中有很大的帮助,因为它在jav ...

  4. phpMyAdmin Transformation 任意文件包含/远程代码执行漏洞

    漏洞参考 https://yq.aliyun.com/articles/679633 国外提供了一个在线测试的靶场     默认密码  root  toor https://www.vsplate.c ...

  5. python3 获取博彩网站页面下所有域名(批量)

    已有的域名信息 详细实现过程如下 #!/usr/bin/env python # -*- coding:utf-8 -*- import requests from bs4 import Beauti ...

  6. 七种方案!探讨Redis分布式锁的正确使用姿势

    前言 日常开发中,秒杀下单.抢红包等等业务场景,都需要用到分布式锁.而Redis非常适合作为分布式锁使用.本文将分七个方案展开,跟大家探讨Redis分布式锁的正确使用方式.如果有不正确的地方,欢迎大家 ...

  7. 19. 一文搞懂 Go Modules 前世今生及入门使用

    Hi,大家好. 我是明哥,在自己学习 Golang 的这段时间里,我写了详细的学习笔记放在我的个人微信公众号 <Go编程时光>,对于 Go 语言,我也算是个初学者,因此写的东西应该会比较适 ...

  8. PTA 求链表的倒数第m个元素

    6-7 求链表的倒数第m个元素 (20 分)   请设计时间和空间上都尽可能高效的算法,在不改变链表的前提下,求链式存储的线性表的倒数第m(>)个元素. 函数接口定义: ElementType ...

  9. Hibernate&MyBatis

    ORM程序技术 概念:ORM是对象(Object).关系(Relational).映射(Mapping)的缩写. 作用:用于替代JDBC 用法:数据库类名与表名对应:字段名和属性名对应: 优势: 更方 ...

  10. 从I/O多路复用到Netty,还要跨过Java NIO包

    本文是Netty系列第4篇 上一篇文章我们深入了解了I/O多路复用的三种实现形式,select/poll/epoll. 那Netty是使用哪种实现的I/O多路复用呢?这个问题,得从Java NIO包说 ...