Solution -「AGC 029E」「AT 4504」Wandering TKHS
\(\mathcal{Description}\)
Link.
给一棵 \(n\) 个点的树,从某个点出发,遍历时必须走到已经走过的连通块所邻接的编号最小的结点。求从每个点出发,走到 \(1\) 号结点所需额外走的结点(即走到块的大小 \(-1\))。
\(n\le2\times10^5\)。
\(\mathcal{Solution}\)
把 \(1\) 提为根,那么一个点到根最大的阻碍就是路径上编号最大的结点。记 \(mx_u\) 表示 \(1\) 到 \(u\) 的最大结点编号,并令 \(R(u,l)\) 表示从 \(u\) 出发,向其子树,仅经过编号严格小于 \(l\) 的点能够到达的点的个数(\(u\) 一定产生贡献,所以至少为 \(1\)),DP 状态 \(f(u)\) 表示 \(u\) 的答案。
现令 \(u\) 是 \(v\) 的父亲,考虑 \(u\) 对 \(v\) 的转移。
若 \(mx_v=v\),显然 \(u\) 不会往 \(v\) 走,所以要加上 \(R(v,mx_u)\)。
否则若 \(mx_u=u\),\(v\) 就会比 \(u\) 多在子树内卡一会儿。即 \(R(v,u)-[v<mx_{fa_u}]R(v,mx_{fa_u})\),后一项是减去重复的贡献。
最后,加上 \(u\) 到 \(1\) 的贡献 \(f(u)\)。
可以用暴搜加上记忆化直接计算 \(R(u,l)\)。考虑到搜索时会被子树内一些比 \(l\) 大的结点所拦截,那么被遍历的连通块就不满足需要计算 \(R\) 的转移限制。所以遍历到的总点数 \(\mathcal O(n)\)。故复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
#include <map>
#include <cstdio>
typedef std::pair<int, int> pii;
const int MAXN = 2e5;
int n, ecnt, head[MAXN + 5], fa[MAXN + 5], mx[MAXN + 5], ans[MAXN + 5];
std::map<pii, int> rch;
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline int max_ ( const int a, const int b ) { return a < b ? b : a; }
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline void init ( const int u ) {
mx[u] = max_ ( u, mx[fa[u]] );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, init ( v );
}
}
}
inline int reach ( const int u, const int lim ) {
pii sta ( u, lim );
if ( rch.count ( sta ) ) return rch[sta];
int ret = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] && v < lim ) {
ret += reach ( v, lim );
}
}
return rch[sta] = ret;
}
inline void solve ( const int u ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
if ( mx[v] == v ) ans[v] = reach ( v, mx[u] );
else if ( mx[u] == u ) {
ans[v] = reach ( v, u ) - ( v > mx[fa[u]] ? 0 : reach ( v, mx[fa[u]] ) );
}
ans[v] += ans[u];
solve ( v );
}
}
}
int main () {
scanf ( "%d", &n );
for ( int i = 1, u, v; i < n; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
init ( 1 );
solve ( 1 );
for ( int i = 2; i <= n; ++ i ) printf ( "%d%c", ans[i], i ^ n ? ' ' : '\n' );
return 0;
}
Solution -「AGC 029E」「AT 4504」Wandering TKHS的更多相关文章
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- javascript中new url()属性,轻松解析url地址
1.首先写一个假的地址(q=URLUtils.searchParams&topic=api)相当于当前的window.location.href const urlParams = new U ...
- 【Azure 应用服务】一个 App Service 同时部署运行两个及多个 Java 应用程序(Jar包)
问题描述 如何在一个AppService下同时部署运行多个Java 应用程序呢? 问题解答 因为App Service的默认根目录为 wwwroot.如果需要运行多个Java 应用程序,需要在 www ...
- Nginx虚拟主机、日志排错、模块配置
目录 Nginx虚拟主机 1. 基于多IP的方式 2. 基于多端口的方式 3. 基于多域名的方式 Nginx日志 Nginx配置文件配置项 Nginx模块 Nginx访问控制模块 Nginx状态监控模 ...
- python极简教程04:进程和线程
测试奇谭,BUG不见. 大家好,我是谭叔. 这一场,主讲python的进程和线程. 目的:掌握初学必须的进程和线程知识. 进程和线程的区别和联系 终于开始加深难度,来到进程和线程的知识点~ 单就这两个 ...
- .NET下如何拦截鼠标、键盘消息?Win32NET来帮你
Win32NET是一个Win32API的.NET下封装的类库,包含: 1: 常用win32的API的net封装 2:鼠标.键盘.热键hook钩子模块, 3:模拟键盘输入文字(支持各种字符文字.不同语言 ...
- Spark-寒假-实验1
(1)切换到目录 /usr/bin: $ cd /usr/bin (2)查看目录/usr/local 下所有的文件: $cd /usr/local $ls (3)进入/usr 目录,创建一个名为 ...
- Cesium源码剖析---视频投影
Cesium中的视频投影是指将视频作为一种物体材质,实现在物体上播放视频的效果.这个功能在Cesium早期版本中就支持了,在Code Example中有一个示例.今天就来分析一下其内部实现原理. 1. ...
- 2022GDUT寒假专题学习-1 B,F,I,J题
专题链接:专题学习1 - Virtual Judge (vjudge.net) B - 全排列 题目 思想 这道题可以用DFS进行求解,但是一看到全排列,其实可以立刻想到一个STL函数:next_pe ...
- java-包概述
1 package face_package; 2 3 import face_packagedemo.DemoA; 4 5 /* 包(package) 6 * 1,对类文件进行分类管理. 7 * 2 ...
- zabbix-mongodb监控脚本(高性能、低占用)
Zabbix调用脚本以实现对MongoDB的监控! 本脚本支持对服务存活状态.副本集.性能指标共计25个监控项! 使用mongostat和"echo rs.status()["me ...