\(\mathcal{Description}\)

  Link.

  给一棵 \(n\) 个点的树,从某个点出发,遍历时必须走到已经走过的连通块所邻接的编号最小的结点。求从每个点出发,走到 \(1\) 号结点所需额外走的结点(即走到块的大小 \(-1\))。

  \(n\le2\times10^5\)。

\(\mathcal{Solution}\)

  把 \(1\) 提为根,那么一个点到根最大的阻碍就是路径上编号最大的结点。记 \(mx_u\) 表示 \(1\) 到 \(u\) 的最大结点编号,并令 \(R(u,l)\) 表示从 \(u\) 出发,向其子树,仅经过编号严格小于 \(l\) 的点能够到达的点的个数(\(u\) 一定产生贡献,所以至少为 \(1\)),DP 状态 \(f(u)\) 表示 \(u\) 的答案。

  现令 \(u\) 是 \(v\) 的父亲,考虑 \(u\) 对 \(v\) 的转移。

  • 若 \(mx_v=v\),显然 \(u\) 不会往 \(v\) 走,所以要加上 \(R(v,mx_u)\)。

  • 否则若 \(mx_u=u\),\(v\) 就会比 \(u\) 多在子树内卡一会儿。即 \(R(v,u)-[v<mx_{fa_u}]R(v,mx_{fa_u})\),后一项是减去重复的贡献。

  最后,加上 \(u\) 到 \(1\) 的贡献 \(f(u)\)。

  可以用暴搜加上记忆化直接计算 \(R(u,l)\)。考虑到搜索时会被子树内一些比 \(l\) 大的结点所拦截,那么被遍历的连通块就不满足需要计算 \(R\) 的转移限制。所以遍历到的总点数 \(\mathcal O(n)\)。故复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

#include <map>
#include <cstdio> typedef std::pair<int, int> pii; const int MAXN = 2e5;
int n, ecnt, head[MAXN + 5], fa[MAXN + 5], mx[MAXN + 5], ans[MAXN + 5];
std::map<pii, int> rch; struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline int max_ ( const int a, const int b ) { return a < b ? b : a; } inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
} inline void init ( const int u ) {
mx[u] = max_ ( u, mx[fa[u]] );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, init ( v );
}
}
} inline int reach ( const int u, const int lim ) {
pii sta ( u, lim );
if ( rch.count ( sta ) ) return rch[sta];
int ret = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] && v < lim ) {
ret += reach ( v, lim );
}
}
return rch[sta] = ret;
} inline void solve ( const int u ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
if ( mx[v] == v ) ans[v] = reach ( v, mx[u] );
else if ( mx[u] == u ) {
ans[v] = reach ( v, u ) - ( v > mx[fa[u]] ? 0 : reach ( v, mx[fa[u]] ) );
}
ans[v] += ans[u];
solve ( v );
}
}
} int main () {
scanf ( "%d", &n );
for ( int i = 1, u, v; i < n; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
init ( 1 );
solve ( 1 );
for ( int i = 2; i <= n; ++ i ) printf ( "%d%c", ans[i], i ^ n ? ' ' : '\n' );
return 0;
}

Solution -「AGC 029E」「AT 4504」Wandering TKHS的更多相关文章

  1. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇

    http://www.4gamer.net/games/216/G021678/20140714079/     连载第2回的本回,  Arc System Works开发的格斗游戏「GUILTY G ...

  4. Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory

    Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...

  5. SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法

    用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...

  6. 「Windows MFC 」「Edit Control」 控件

    「Windows MFC 」「Edit Control」 控件

  7. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  8. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  9. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

随机推荐

  1. centos 操作系统优化

    命令提示符优化 修改PS1环境变化 vim /etc/profile #在最后一行添加 export PS1='[\u@\H \w]$' \u ---显示当前登录用户名称 \h ---显示系统主机名称 ...

  2. Hive的连接和运行模式

    原文链接: https://www.toutiao.com/i6771018203687551495/ Hive的连接 启动hadoop的时候将history也启动,如果出问题,可以方便我们后续定位 ...

  3. 服务监控 | 彻底搞懂Dropwizard Metrics一篇就够了

    Metrics是一个提供服务性能检测工具的Java类库,它提供了功能强大的性能指标工具库用于度量生产环境中的各关键组件性能. 度量类型 Metrics提供了以下几种基本的度量类型: Gauge:用于提 ...

  4. day5 数组对角线及最大值

    1.输出M行M列数组方针,求对角线元素和#define M 5void fun(int xx[][M], int n)//n行n列{ int i = 0; int sum = 0; for (i = ...

  5. [Windows]为windows系统鼠标右键添加软件和图标

    转载自 https://blog.csdn.net/p312011150/article/details/81207059 一.打开注册表 首先打开windows的注册表,当然了,我个人倾向于 (1) ...

  6. [Altium Designer 学习]怎样添加3D模型

    对于为给PCB添加3D模型,很多人觉得这是个绣花针的活,中看不中用.在我看来这也未必,特别是常用的3D模型能在网上下载的今天,只需要几个简单的操作,就能使你的PCB更加赏心悦目.除此之外,3D模型还有 ...

  7. 【刷题-LeetCode】230. Kth Smallest Element in a BST

    Kth Smallest Element in a BST Given a binary search tree, write a function kthSmallest to find the k ...

  8. linux下编译支持opencl的opencv for android

    主要的步骤其他人已经写过,请参考这篇:https://www.cnblogs.com/hrlnw/p/4720977.html 操作的细节请参考附件的pdf:  https://files.cnblo ...

  9. 【转载】ASP.NET前台代码绑定

    ASP.NET前台代码绑定后台变量方法总结http://www.cnblogs.com/lerit/archive/2010/10/22/1858007.html ASP.NET前台无法访问后台int ...

  10. http 的get 与 post 的区别

    1.原理区别 一般在浏览器中输入网址访问资源都是通过GET方式:在FORM提交中,可以通过Method指定提交方式为GET或者POST,默认为GET提交 Http定义了与服务器交互的不同方法,最基本的 ...