Yang M., Liu F., Chen Z., Shen X., Hao J. and Wang J. CausalVAE: disentangled representation learning via neural structural causal models. arXiv preprint arXiv:2004.086975, 2020.

隐变量的因果表示.

主要内容

我们通常希望隐变量\(z\)能够表示一些特别的特征, 通过改变\(z\)使得生成的图形某些属性发生相应的变换, 但是这种设定的方式并不具备因果的关系, 比方说

这个摆锤, 其隐变量\(z\)是光照, 摆锤的角度, 影子的长短.

我们可以改变摆锤的角度, 一般的生成模型摆锤的角度变了, 但是光照和影子长短没有发生变化, 实际上由于摆锤角度的变化, 对于的隐变量:影子的长短也应该发生相应的变化以满足物理的规律. 如何把这些因果关系融入到普通的VAE中是本文的独到之处.

模型

Encoder 部分:

\[\epsilon = h(x, u) + \zeta,
\]

\(\epsilon\)可以看成是一个临时的隐变量;

\[z = (I - A)^{-1} \epsilon.
\]

Decoder部分:

\[z_i = g_i(A_i \circ z) + \epsilon_i,
\]

这一部分是重构\(z\), 正是这一步的存在使得我们能够干预\(z_i\)使得其它的\(z_j\)也发生相应的改变.

\[x = f(z) + \xi.
\]

联合分布为:

\[p_{\theta}(x, z, \epsilon|u) = p_{\theta}(x|z, \epsilon, u)p_{\theta}(\epsilon, z|u), \\
p_{\theta}(x|z,\epsilon,u) = p_{\theta}(x|z) = p_{\xi}(x-f(z)), \\
p_{\theta}(\epsilon,z|u) = p_{\epsilon}(\epsilon) p_{\theta}(z|u), \quad p_{\epsilon}(\epsilon) = \mathcal{N}(0, I), \\
p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|u_i), \quad p_{\theta}(z_i|u_i) = \mathcal{N}(\lambda_1(u_i), \lambda_2^2(\mu_i)).
\]

估计的后验分布为:

\[q_{\phi}(z, \epsilon|x, u) = q(z|\epsilon)q_{\zeta}(\epsilon - h(x, u)), \\
q(z|\epsilon) = \delta (z=(I-A)^{-1}\epsilon).
\]

注: \(z, u, \epsilon \in \mathbb{R}^n, x \in \mathbb{R}^d.\)

ELBO

由此可以推出ELBO:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{\epsilon, z\sim q_{\phi}}[\log p_{\theta}(x| z, \epsilon,u)] - \mathbb{D}(q_{\phi}(\epsilon, z|x, u))\| p_{\theta}(\epsilon, z|u)].
\]

由于\(p(z|\epsilon) = \delta(z=(I-A)^{-1}\epsilon)\), 所以上式可以进一步化为:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{q_{\phi(z|x,u)}}[\log p_{\theta}(x|z)] - \mathbb{D}(q_{\phi}(\epsilon|x,u)\|p_{\epsilon}(\epsilon))-\mathbb{D}(q_{\phi}(z|x,u)\|p_{\theta}(z|u))]+\mathrm{const}.
\]

关于\(A\)

正如在这儿所论述的, \(A\)需要对应一个有向无环图, 本文采取的策略是:

\[H(A) = \mathrm{tr}((I+\frac{c}{n}A \circ A)^n) - n =0,
\]

这里\(c\)是任意正数.

同时为了满足\(z\)重构, 需要以下条件满足:

\[l_m = \mathbb{E}_{q_{\phi}} \sum_{i=1}^n \|z_i-g_i(A_i \circ z)\|^2 \le \kappa_2,
\]

注: 这里\(z_i\)是重构前的.

特别的, 为了更好地用额外信息(不是很认同, 感觉得看实际情况吧):

\[l_u = \mathbb{E}_{q_{\mathcal{X}}} \|u - \sigma(A^Tu)\|_2^2 \le \kappa_1,
\]

所以最终的损失为:

\[\mathcal{L} = -\mathrm{ELBO} +\alpha H(A) + \beta l_u + \gamma l_m,
\]

注: 本文不像别的方法一样用augmented Lagrange 求解.

注: 作者设计的实验实在是非常有趣.

CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models的更多相关文章

  1. 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》

    论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...

  2. Self-Supervised Representation Learning

    Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilia ...

  3. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  4. 翻译 Improved Word Representation Learning with Sememes

    翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...

  5. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  6. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  7. (zhuan) Notes on Representation Learning

    this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/   Notes on Repr ...

  8. 网络表示学习Network Representation Learning/Embedding

    网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工 ...

  9. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

随机推荐

  1. C/C++ Qt 数据库与ComBox多级联动

    Qt中的SQL数据库组件可以与ComBox组件形成多级联动效果,在日常开发中多级联动效果应用非常广泛,例如当我们选择指定用户时,我们让其在另一个ComBox组件中列举出该用户所维护的主机列表,又或者当 ...

  2. Slay 全场!Erda 首次亮相 GopherChina 大会

    来源|尔达 Erda 公众号 相关视频:https://www.bilibili.com/video/BV1MV411x7Gm 2021 年 6 月 26 日,GopherChina 大会准时亮相北京 ...

  3. 【Linux】【Basis】磁盘分区

    1. Linux磁盘及文件系统管理 1.1. 基本概念: 1.1.1. 磁盘接口类型: IDE(ata):并口,133MB/s,设备/dev/hd[a-z] SCSI:并口,Ultrascsi320, ...

  4. MFC入门示例之组合框(CComboBox)、列表框(CListBox)

    1 //添加按钮点击事件 2 void CMFCApplication4Dlg::OnBnClickedButton1() 3 { 4 CString strText; 5 //获取文本框的值 6 G ...

  5. numpy基础教程--浅拷贝和深拷贝

    在numpy中,使用等号(=)直接赋值返回的是一个视图,属于浅拷贝:要完整的拷贝一个numpy.ndarray类型的数据的话,只能调用copy()函数 # coding = utf-8 import ...

  6. C#面对抽象编程第一讲

    闲话不多说,面向对象编程是高级语言的一个特点,但是把它概括成面向抽象更容易直击灵魂,经过了菜鸟大家都要面对的是不要写这么菜的代码了. 上例子,这应该是大家都很熟悉耳熟能详的代码, so easy. 1 ...

  7. java 数据类型String 【正则表达式】匹配工具 Pattern和Matcher

    Pattern和Matcher的介绍: Pattern对象是正则表达式编译后在内存中的表示形式,因此正则表达式宇符串必须先被编译为Pattern对象,然后再用该Pattern对象创建对应的Matche ...

  8. AcWing09. 分组背包问题

    有\(N\)组物品和一个容量是\(V\)的背包. 每组物品有若干个,同一组内的物品最多只能选一个. 每件物品的体积是\(v_{ij}\),价值是\(w_{ij}\),其中\(i\)是组号,\(j\)是 ...

  9. MIUI12.5扫码之后无法连接MIUI+,显示连接失败

    设置-应用设置-应用管理-小米互联通信服务(如果没有找到,进行搜索即可)-清除数据 重新扫码连接就可以连上了 (感觉不怎么样,不知道是不是我网卡,用起来卡卡的...)

  10. JAVA获取访问者的内网IP地址

    /** * 获取访问者内网IP * @return the server ip */ public static String getIntranetIp() { // 本地IP,如果没有配置外网IP ...