CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models
概
隐变量的因果表示.
主要内容
我们通常希望隐变量\(z\)能够表示一些特别的特征, 通过改变\(z\)使得生成的图形某些属性发生相应的变换, 但是这种设定的方式并不具备因果的关系, 比方说
这个摆锤, 其隐变量\(z\)是光照, 摆锤的角度, 影子的长短.
我们可以改变摆锤的角度, 一般的生成模型摆锤的角度变了, 但是光照和影子长短没有发生变化, 实际上由于摆锤角度的变化, 对于的隐变量:影子的长短也应该发生相应的变化以满足物理的规律. 如何把这些因果关系融入到普通的VAE中是本文的独到之处.
模型
Encoder 部分:
\]
\(\epsilon\)可以看成是一个临时的隐变量;
\]
Decoder部分:
\]
这一部分是重构\(z\), 正是这一步的存在使得我们能够干预\(z_i\)使得其它的\(z_j\)也发生相应的改变.
\]
联合分布为:
p_{\theta}(x|z,\epsilon,u) = p_{\theta}(x|z) = p_{\xi}(x-f(z)), \\
p_{\theta}(\epsilon,z|u) = p_{\epsilon}(\epsilon) p_{\theta}(z|u), \quad p_{\epsilon}(\epsilon) = \mathcal{N}(0, I), \\
p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|u_i), \quad p_{\theta}(z_i|u_i) = \mathcal{N}(\lambda_1(u_i), \lambda_2^2(\mu_i)).
\]
估计的后验分布为:
q(z|\epsilon) = \delta (z=(I-A)^{-1}\epsilon).
\]
注: \(z, u, \epsilon \in \mathbb{R}^n, x \in \mathbb{R}^d.\)
ELBO
由此可以推出ELBO:
\]
由于\(p(z|\epsilon) = \delta(z=(I-A)^{-1}\epsilon)\), 所以上式可以进一步化为:
\]
关于\(A\)
正如在这儿所论述的, \(A\)需要对应一个有向无环图, 本文采取的策略是:
\]
这里\(c\)是任意正数.
同时为了满足\(z\)重构, 需要以下条件满足:
\]
注: 这里\(z_i\)是重构前的.
特别的, 为了更好地用额外信息(不是很认同, 感觉得看实际情况吧):
\]
所以最终的损失为:
\]
注: 本文不像别的方法一样用augmented Lagrange 求解.
注: 作者设计的实验实在是非常有趣.
CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models的更多相关文章
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- Self-Supervised Representation Learning
Self-Supervised Representation Learning 2019-11-11 21:12:14 This blog is copied from: https://lilia ...
- (转)Predictive learning vs. representation learning 预测学习 与 表示学习
Predictive learning vs. representation learning 预测学习 与 表示学习 When you take a machine learning class, ...
- 翻译 Improved Word Representation Learning with Sememes
翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- (zhuan) Notes on Representation Learning
this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/ Notes on Repr ...
- 网络表示学习Network Representation Learning/Embedding
网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工 ...
- Machine Learning:Neural Network---Representation
Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...
随机推荐
- Redis - 1 - linux中使用docker-compose安装Redis - 更新完毕
0.前言 有我联系方式的那些半吊子的人私信问我:安装Redis有没有更简单的方式,网上那些文章和视频,没找到满意的方法,所以我搞篇博客出来说明一下我的安装方式吧 1.准备工作 保证自己的linux中已 ...
- AI ubantu 环境安装
ubantu安装记录 apt install python3-pip anaconda安装 https://repo.anaconda.com/archive/Anaconda3-2020.11-Li ...
- Playing with Destructors in C++
Predict the output of the below code snippet. 1 #include <iostream> 2 using namespace std; 3 4 ...
- SpringAOP简单例子
这个只是个简单AOP例子,包括前置通知,后置通知,环绕通知,和目标对象.写这个例子的主要目标只是想让想学AOP的能更快地入门,了解一下如何去配置AOP里面的东东.目标对象的接口:IStudent.ja ...
- RunLoop基础知识以及GCD
- 1.1 字面意思 a 运行循环 b 跑圈 - 1.2 基本作用(作用重大) a 保持程序的持续运行(ios程序因而能一直活着不会死) b 处理app中的各种事件(比如触摸事件 ...
- 如何用shell脚本分析网站日志统计PV、404、500等数据
以下shell脚本能统计出网站的总访问量,以及404,500出现的次数.统计出来后,可以结合监控宝来进行记录,进而可以看出网站访问量是否异常,是否存在攻击.还可以根据查看500出现的次数,进而判断网站 ...
- C# 温故知新 第二篇 C# 程序的通用结构
C# 程序由一个或多个文件组成. 每个文件均包含零个或多个命名空间. 一个命名空间包含类.结构.接口.枚举.委托等类型或其他命名空间. 以下示例是包含所有这些元素的 C# 程序主干. 主要包括 1. ...
- 记一次单机Nginx调优,效果立竿见影
一.物理环境 1.系统是Centos 8,系统配置 2核4G,8M带宽,一台很轻的应用服务器. 2.站点部署情况.但站点部署两个实例,占用两个端口,使用nginx 负载转发到这两个web站点. 二. ...
- Log4j漏洞源码分析
Log4j漏洞源码分析 这几天Log4j的问题消息满天飞,今天我们就一起来看看从源码角度看看这个漏洞是如何产生的. 大家都知道这次问题主要是由于Log4j中提供的jndi的功能. 具体涉及到的入口类是 ...
- AD小白如何发板厂制板--导出gerber文件和钻孔文件+嘉立创下单教程
AD如何发工程制板子? 方式1,发PCB源文件给板厂 方式2,发一些工艺文件给板厂,这样就无须泄漏你的PCB源文件了,一个硬件工程师必须要掌握方式2. 方式2要做的就是导出gerber文件和钻孔文件, ...