前言:

题面挺神仙。反正我考试的时候看了40分钟也没看懂。

后来改题感觉自己写的挺假,没想到加个\(k==1\)的特判竟然就A了?无语力。

解析:

看懂题以后就好说了。首先这显然是一个树形结构。我们考虑把“交”的操作放到一棵树上,把“并”的操作放到一棵树上。

考虑建边。比如将\((1,2,3)\)并成\((4)\),那么就在并树上,将\(1,2,3\)的父亲设置成\(4\)。

然后,对于每个询问\((x,y)\),如果在交树上,\(x\)是\(y\)的祖先,或在并树上,\(y\)是\(x\)的祖先,那么答案就是\(1\),否则是\(0\)。

看起来有手就行。不过细节还是要注意。

关于实现上的细节:

1.

我们在建立模型的时候,显然建的是有向边,由儿子指向父亲。但我们在真正建树的时候,是要建无向边。因为无向边比较好维护。那此时怎么判断父子关系呢?

首先,有一个性质。每个节点的父亲的编号一定比自己的编号大。也就是说,大的点一定在上面。因为维护的是一片森林,所以可以根据这个性质找到每棵树的根节点。

所以可以考虑按编号从大到小DFS一遍。按照DFS序判断父子关系。

写过树剖的人都知道,一颗子树内的dfs序是连续的。因此假如y是x的父亲,那么\(dfn[y]<=dfn[x]<=dfn[x]+size[x]-1<=dfn[y]+size[y]-1\)

2.

注意一个细节。\(k==1\)的时候,交和并等价。那么既要在交树上建边,又要在并树上建边。

然后就可以A掉这道题了。

关于正确性:

1.为什么只需要判断x和y的关系,不需要判断y的祖先和x的关系呢?

首先,对于在y到根节点上的路径上的点(不包括根节点),那么这些节点既有入度,也有出度,那么这些点就不可能在另外一棵树上出现了。

其次,对于根节点,它只可能去合成别的节点,那么它在另一棵树上一定没有入度。也就是说,即使根节点在另一棵树上出现,它也必然是叶子节点,不可能是x的父亲,所以不用判。

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn=500000+10;
int n,m,cntj,cntb,totot,totj,totb,Time;
struct node{
int to,next;
}edgej[maxn],edgeb[maxn];
int headj[maxn],headb[maxn],dfnb[maxn],dfnj[maxn],sizeb[maxn],sizej[maxn];
struct que{
int x,y;
}b[maxn];
bool vis[maxn];
void addj(int from,int to){
edgej[++cntj].to=to;
edgej[cntj].next=headj[from];
headj[from]=cntj;
}
void addb(int from,int to){
edgeb[++cntb].to=to;
edgeb[cntb].next=headb[from];
headb[from]=cntb;
}
void dfs1(int u,int f){
dfnj[u]=++Time;
sizej[u]=1;
vis[u]=1;
for(int i=headj[u];i;i=edgej[i].next){
int v=edgej[i].to;
if(v==f) continue;
dfs1(v,u);
sizej[u]+=sizej[v];
}
}
void dfs2(int u,int f){
dfnb[u]=++Time;
sizeb[u]=1;
vis[u]=1;
for(int i=headb[u];i;i=edgeb[i].next){
int v=edgeb[i].to;
if(v==f) continue;
dfs2(v,u);
sizeb[u]+=sizeb[v];
}
}
int get_ans(int x,int y){
if(dfnj[x]<=dfnj[y]&&dfnj[x]+sizej[x]>=dfnj[y]+sizej[y]) return 1;
if(dfnb[y]<=dfnb[x]&&dfnb[y]+sizeb[y]>=dfnb[x]+sizeb[x]) return 1;
return 0;
}
void Solve(){
scanf("%d%d",&n,&m);
for(int i=1,op,k,ss;i<=m;++i){
scanf("%d",&ss);
if(ss){
totot++;
scanf("%d%d",&b[totot].x,&b[totot].y);
}else{
scanf("%d%d",&op,&k);
if(op){
totb++;
if(k>1){
for(int j=1;j<=k;++j){
scanf("%d",&ss);
addb(ss,totb+totj+n);
addb(totb+totj+n,ss);
}
}else{
for(int j=1;j<=k;++j){
scanf("%d",&ss);
addb(ss,totb+totj+n);
addb(totb+totj+n,ss);
addj(ss,totb+totj+n);
addj(totb+totj+n,ss);
}
}
}else{
totj++;
if(k>1){
for(int j=1;j<=k;++j){
scanf("%d",&ss);
addj(ss,totj+totb+n);
addj(totj+totb+n,ss);
}
}else{
for(int j=1;j<=k;++j){
scanf("%d",&ss);
addb(ss,totb+totj+n);
addb(totb+totj+n,ss);
addj(ss,totb+totj+n);
addj(totb+totj+n,ss);
}
}
}
}
}
//printf("n==%d totj=%d totb=%d cntj==%d cntb==%d\n",n,totj,totb,cntj,cntb);
for(int i=totj+totb+n;i;--i) if(!vis[i]) dfs1(i,0);
memset(vis,0,sizeof(vis));
Time=0;
for(int i=totb+totj+n;i;--i) if(!vis[i]) dfs2(i,0);
//for(int i=1;i<=totj+totb+n;++i) printf("dfnj[%d]=%d dfnb[%d]=%d sizej[%d]=%d sizeb[%d]=%d\n",i,dfnj[i],i,dfnb[i],i,sizej[i],i,sizeb[i]);
for(int i=1;i<=totot;++i) printf("%d\n",get_ans(b[i].x,b[i].y));
}
int main(){
freopen("friendship.in","r",stdin);
freopen("friendship.out","w",stdout);
Solve();
return 0;
}

主仆见证了 Hobo 的离别 题解的更多相关文章

  1. NOIP模拟测试26「嚎叫响彻在贪婪的机房·主仆见证了 Hobo 的离别·征途堆积出友情的永恒」

    题目比较神仙,注意是题目神仙 贪婪暗示贪心,堆积暗示堆优化$\%\%\%\%\%\%\%$ 两个乱搞$+$一个堆优化$dp$ 嚎叫响彻在贪婪的机房 题解 对于一个序列来说只要他们差的$gcd$不为$1 ...

  2. 8.19 NOIP模拟测试26(B) 嚎叫响彻在贪婪的厂房+主仆见证了 Hobo 的离别+征途堆积出友情的永恒

    T1 嚎叫响彻在贪婪的厂房 以前做过一个等比数列的题「序列」,这个类似 是等差数列且公差不为1的条件就是各项差的绝对值的$gcd!=1$,每次拿出序列前两个数,求出差值,插入到set里,每次向后扩展, ...

  3. HZOI20190819模拟26题解

    题面:https://www.cnblogs.com/Juve/articles/11376806.html A. 嚎叫响彻在贪婪的厂房: 是时候学习一下map和set的用法了...... 贪心:区间 ...

  4. HZOJ 20190819 NOIP模拟26题解

    考试过程: 照例开题,然后觉得三道题都挺难,比昨天难多了(flag×1),T1 dp?T2 数据结构? T3 dp?事实证明我是sb然后决定先搞T2,但是,woc,这题在说什么啊,我怎么看不懂题啊,连 ...

  5. 「模拟8.19 A嚎叫..(set) B主仆..(DFS) C征程..(DP+堆优化)」

    为啥这一套题目背景感到很熟悉. T1  嚎叫响彻在贪婪的厂房 考试一个小时没调出来,自闭了.......... 正解很好想,最后实在打不出来了只好暴力骗分了... 联想到以前做的题:序列(涉及质因数分 ...

  6. Noip模拟77 2021.10.15

    T1 最大或 $T1$因为没有开$1ll$右移给炸掉了,调了一年不知道为啥,最后实在不懂了 换成$pow$就过掉了,但是考场上这题耽误了太多时间,后面的题也就没办法好好打了.... 以后一定要注意右移 ...

  7. NOIP 模拟 七十七

    100+60+95+30; T4 一个变量打错挂了40.. T1 最大或 考虑从高到低枚举的二进制位,然后和的对应二进制位进行比较.如果两 者相同,那么不论怎么选择,,答案在这个位置上的值一定和在这个 ...

  8. NOIP模拟77

    前言 感觉最近太飘了,这次考试是挺好的一次打击(好像也不算是). 犯了一个智障错误(双向边一倍数组 100pts->30pts)别的就.. T1 最大或 解题思路 一开始我以为是一个找规律,然而 ...

  9. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...

随机推荐

  1. apachectl命令

    Linux apachectl命令可用来控制Apache HTTP服务器的程序. apachectl是slackware内附Apache HTTP服务器的script文件,可供管理员控制服务器,但在其 ...

  2. zt:我使用过的Linux命令之ar - 创建静态库.a文件

    我使用过的Linux命令之ar - 创建静态库.a文件 本文链接:http://codingstandards.iteye.com/blog/1142358    (转载请注明出处) 用途说明 创建静 ...

  3. PHP的rar解压读取扩展包学习

    作为压缩解压方面的扩展学习,两大王牌压缩格式 rar 和 zip 一直是计算机领域的压缩终结者.rar 格式的压缩包是 Windows 系统中有接近统治地位的存在,今天我们学习的 PHP 扩展就是针对 ...

  4. P1909 [NOIP2016 普及组] 买铅笔

    如果她选择购买第一种包装,那么她需要购买29份,共计2×29=58支,需要花费的钱为2×29=58. 实际上,P老师会选择购买第三种包装,这样需要买22份.虽然最后买到的铅笔数 量更多了,为30×2= ...

  5. Flutter 对状态管理的认知与思考

    前言 由 编程技术交流圣地[-Flutter群-] 发起的 状态管理研究小组,将就 状态管理 相关话题进行为期 两个月 的讨论. 目前只有内定的 5 个人参与讨论,如果你对 状态管理 有什么独特的见解 ...

  6. Web爬虫|入门实战之糗事百科(附源码)

    coding by real mind writing by genuine heart 解析 任务背景:https://www.qiushibaike.com/hot/   窥探网页细节:观察每一页 ...

  7. 华为云计算IE面试笔记-云磁盘和普通磁盘的区别。

    1. 定义 云硬盘:一种虚拟块存储服务,主要为ECS和BMS提供块存储空间 普通磁盘:也称本地硬盘,指挂载在计算实例物理机上的本地硬盘 2. 性能 吞吐量具体情况具体分析.(若云磁盘用的SSD本地磁盘 ...

  8. 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 百篇博客分析OpenHarmony源码 | v41.03

    百篇博客系列篇.本篇为: v41.xx 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁 ...

  9. 系统设计实践(03)- Instagram社交服务

    前言 系统设计实践篇的文章将会根据<系统设计面试的万金油>为前置模板,讲解数十个常见系统的设计思路. 前置阅读: <系统设计面试的万金油> 系统设计实践(01) - 短链服务 ...

  10. P1791-[国家集训队]人员雇佣【最大权闭合图】

    正题 题目链接:https://www.luogu.com.cn/problem/P1791 题目大意 有\(n\)个人,雇佣第\(i\)个需要\(A_i\)的费用,对于\(E_{i,j}\)表示如果 ...