令$f(x)=\frac{x}{\max_{k^{2}|x}k^{2}}$,最优解即将$f(l),f(l+1),...,f(r)$排序,那么每存在一种不同的数则答案减1,那么$x$出现当且仅当$f(x)=x$且存在$k$满足$l\le xk^{2}\le r$

枚举$k$,那么即求$(\lfloor\frac{l-1}{k^{2}}\rfloor,\lfloor\frac{r}{k^{2}}\rfloor]$中有多少个数最大平方因子为1,但同时还有重复,即区间右端点要对上一次左端点取min,之后拆成两个前缀和,即求$[1,n]$中$f(x)=x$的数个数

类似洛谷4318,容斥即$\sum_{i=1}^{\sqrt{n}}\mu(i)\lfloor\frac{n}{i^{2}}\rfloor$,再对$i$数论分块,对于$i\le n^{\frac{1}{3}}$,共$o(n^{\frac{1}{3}})$种;对于$i>n^{\frac{1}{3}}$,则有$\frac{n}{i^{2}}\le n^{\frac{1}{3}}$,同样共$o(n^{\frac{1}{3}})$种

再对外层$k$数论分块,对于较小的一部分直接线性筛求出$\mu$,对于较大的部分套用上面的做法,考虑复杂度:对于$k\le r^{x}$,复杂度为$r^{\frac{1}{3}}\int_{0}^{r^{x}}k^{-\frac{2}{3}}\ dk=o(r^{\frac{x+1}{3}})$;对于$k>r^{x}$,则有$\frac{r}{k^{2}}\le r^{1-2x}$,复杂度为$o(r^{1-2x})$

取$\frac{x+1}{3}=1-2x$,解得$x=\frac{2}{7}$,总复杂度为$o(r^\frac{3}{7})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define ll long long
5 int p[N],vis[N],mu[N],s1[N],s2[N];
6 ll l,r,ans;
7 ll calc(ll n){
8 if (n<N-4)return s2[n];
9 ll ans=0;
10 for(ll i=1,j;i*i<=n;i=j+1){
11 j=(ll)sqrt(n/(n/(i*i)));
12 ans+=n/(i*i)*(s1[j]-s1[i-1]);
13 }
14 return ans;
15 }
16 int main(){
17 mu[1]=1;
18 for(int i=2;i<N-4;i++){
19 if (!vis[i]){
20 p[++p[0]]=i;
21 mu[i]=-1;
22 }
23 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
24 vis[i*p[j]]=1;
25 if (i%p[j])mu[i*p[j]]=mu[i]*mu[p[j]];
26 else{
27 mu[i*p[j]]=0;
28 break;
29 }
30 }
31 }
32 for(int i=1;i<N-4;i++){
33 s1[i]=s1[i-1]+mu[i];
34 s2[i]=s2[i-1]+mu[i]*mu[i];
35 }
36 scanf("%lld%lld",&l,&r);
37 l--;
38 ans=r-l;
39 ll las=r;
40 for(ll i=1,j;i*i<=r;i=j+1){
41 if (i*i>l)j=(ll)sqrt(r/(r/(i*i)));
42 else j=(ll)sqrt(min(l/(l/(i*i)),r/(r/(i*i))));
43 ans-=calc(min(r/(i*i),las))-calc(l/(i*i));
44 las=l/(i*i);
45 }
46 printf("%lld",ans);
47 }

[luogu5438]记忆的更多相关文章

  1. vim(vi)常用操作及记忆方法

    vi(vim)可以说是linux中用得最多的工具了,不管你配置服务也好,写脚本也好,总会用到它.但是,vim作为一个“纯字符”模式下的工具,它的操作和WINDOWS中的文本编辑工具相比多少有些复杂.这 ...

  2. Java基础加强之集合篇(模块记忆、精要分析)

    千里之行,始于足下.把别人的变成自己,再把自己的分享给别人,这也是一次提升的过程.本文的目的是以一篇文章从整体把握集合体系又不失一些细节上的实现,高手路过. 集合的作用与特点 Java是一门面向对象语 ...

  3. 【验证】C# dataSource 的记忆功能

    做项目时遇到的问题:dataSource被ComboBox引用过一次,会记忆最后一次选中的值,然后下一次再用时这个值会直接呈现在ComboBox中. 为验证是dataSource还是ComboBox自 ...

  4. 挣值管理(PV、EV、AC、SV、CV、SPI、CPI) 记忆

    挣值管理法中的PV.EV.AC.SV.CV.SPI.CPI这些英文简写相信把大家都搞得晕头转向的.在挣值管理法中,需要记忆理解的有三个参数:PV.AC.EV.     PV:计划值,在即定时间点前计划 ...

  5. *HDU1142 最短路+记忆化dfs

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  6. Cocos2dx3.11.1Android播放视频,后台 黑屏,无法记忆播放bug修改

    /* * Copyright (C) 2006 The Android Open Source Project * Copyright (c) 2014 Chukong Technologies In ...

  7. Android狂记忆

    虽然说技术人员偏爱实战,而不屑理论或记忆,但实战之前,若是记忆一些知识,开发起来将会如虎添翼,不说了,开始狂记吧! Android 系统包说明: android.app  :提供高层的程序模型.提供基 ...

  8. 关于javascript对象的简单记忆法

    关于javascript对象方法的简单记忆法(个人整理) string对象: 大号小号闪烁加链接./big/small/blink/link/ 粗体斜体打字删除线./bold/italics/fixe ...

  9. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

随机推荐

  1. C++核心编程 4 类和对象-封装

    C++面向对象的三大特性:封装.继承.多态 C++认为万事万物皆为对象,对象上有其属性和行为 封装 意义:1.将属性和行为作为一个整体,表现生活中的事物 语法: class 类名{   访问权限:属性 ...

  2. 从零入门 Serverless | 教你 7 步快速构建 GitLab 持续集成环境

    作者 | 存诚 阿里云弹性计算团队 本文整理自<Serverless 技术公开课>,"Serverless"公众号后台回复"入门",即可获取系列文章 ...

  3. 【.Net vs Java? 】 先来看一下Java和C#的数据类型区别。

    新工作.Net和Java都要做,早期也做过一段Java的项目,但没有系统的深入学习过.一直觉得这两门语言估计是最相近的两门语言了,好多代码可以说直接拷过来都不带报错的,但仔细推敲还是有很多的不同. 1 ...

  4. sprintboot整合mybatis查询不出数据

    数据库有数据,程序没有任何报错,但是查询结果没有数据,list显示[null,nul]. 检查了sql语句,以及controller.service.mapper,检查没发现问题,怀疑是字段映射问题. ...

  5. GoLang设计模式11 - 备忘录模式

    备忘录模式是一种行为型设计模式.这种模式允许我们保存对象在某些关键节点时的必要信息,以便于在适当的时候可以将之恢复到之前的状态.通常它可以用来帮助设计撤销/恢复操作. 下面是备忘录设计模式的主要角色: ...

  6. Spark RDD编程(博客索引,日常更新)

    本篇主要是记录自己在中解决RDD编程性能问题中查阅的论文博客,为我认为写的不错的建立索引方便查阅,我的总结会另立他篇 1)通过分区(Partitioning)提高spark性能https://blog ...

  7. RabbitMQ:从入门到搞定面试官

    安装 使用docker安装,注意要安装tag后缀为management的镜像(包含web管理插件),我这里使用的是rabbitmq:3.8-management 1. 拉取镜像 shell docke ...

  8. Flutter的环境配置以及一些常见问题

    flutter & AndroidStudio flutter的下载与配置 flutter是Google推出的基于Dart语言开发的跨平台开源UI框架,能够支持安卓与iOS. flutter框 ...

  9. 带你用AVPlayer实现音频和视频播放

    项目概述 以下项目是基于AVPlayer的实际运用,实现音频播放.横竖屏视频切换播放.类似抖音的竖屏全屏播放效果. 项目地址:AVPlayerAudioVideo 如果文章和项目对你有帮助,还请给个S ...

  10. Python课程笔记(十一)

    一.线程与多线程 1.线程与进程 线程指的是 进程(运行中的程序)中单一顺序的执行流. 多个独立执行的线程相加 = 一个进程 多线程程序是指一个程序中包含有多个执行流,多线程是实现并发机制的一种有效手 ...