P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋
题意
一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右。他们每次操作可以移动 1 到 \(d\) 个棋子。
每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。
思路
显然可以将题意转化为一种 K-Nim 游戏,即在 \(\frac k2\) 堆石子中,每次可将 \(d\) 堆石子取任意个,令对手无路可走时获胜。
用总方案数减去先手必败的方案数即为答案,因为先手必败方案更加好算。
K-Nim 游戏
结论
设 \(r_i\) 为二进制第 \(i\) 位所有数该位为 1 的个数 \(\pmod {d+1}\) 的值,那么只用一步即可在 “\(r\) 全为 0” 和 “\(r\) 不全为 0” 两种状态间转移。
感性证明
考虑一个大小不超过 \(d\) 的集合,为我们一次操作需要拿走的石子堆的集合,选 0 或 1 都是合法的。
假设我们现在已经有这样一个大小为 \(d\) 的集合,其中有 \(x\) 个 1,\(y\) 个 0,即 \(x+y=d\)。我们要让 \(r\) 等于零,分以下情况:
- \(x\ge r\) 则选择 \(r\) 个 1 变为 0 即可。
- \(x<r\) 则 \(y+r\ge d+1\) ,则选择 \(d-r+1\) 个 0 变为 1 即可。
所以一定有一种方法使这一位的 \(r\) 变成 0.
现在我们并没有一个可以随便转换的集合,但是当一个数的高位从 1 变为 0 之后低位就可以随便选 0 和 1.所以我们从高位向低位考虑,如果一直符合第二个情况就向下考虑,否则就是第一个情况,并且在这种情况下把 1 变成 0 是合法的,那么我们扩大集合即可。
得证。
在上述博弈中,所有 \(r\) 为 0 的状态是必败态。我们只需要算所有这种情况的方案就可以了。
考虑 Dp。设 \(f_{ij}\) 为前 \(i\) 位的 \(r\) 均为 0,总共 \(j\) 个石子的方案数。
新选一位,枚举在 \(d+1\) 堆石子中放入若干次石子。即
\]
最后统计答案需要枚举每一堆的起点位置,即在原题中的白棋的位置,答案为所有位的
\]
的和。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=10005,mod=1e9+7;
int n,k,d,C[maxn][205],f[18][100005];
inline void work(){
n=read(),k=read(),d=read();
C[0][0]=1;
for(int i=1;i<=n;i++){
C[i][0]=1;
for(int j=1;j<=200;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
f[0][0]=1;
for(int i=0;i<=16;i++) for(int j=0;j<=n-k;j++) for(int x=0;(1ll<<i)*x*(d+1)<=n-k and x*(d+1)<=k/2;x++)
f[i+1][j+(1ll<<i)*x*(d+1)]=(f[i+1][j+(1ll<<i)*x*(d+1)]+1ll*f[i][j]*C[k/2][x*(d+1)])%mod;
int ans=0;
for(int i=0;i<=n-k;i++) ans=(ans+1ll*f[17][i]*C[n-i-k/2][k/2])%mod;
printf("%d\n",(C[n][k]-ans+mod)%mod);
}
}
signed main(){
star::work();
return 0;
}
P2490 [SDOI2011]黑白棋的更多相关文章
- BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)
怎么SDOI2011和SDOI2019的两道题这么像啊..(虽然并不完全一样) 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?i ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
- [SDOI2011]黑白棋
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)
题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...
- 【bzoj2281】 Sdoi2011—黑白棋
http://www.lydsy.com/JudgeOnline/problem.php?id=2281 (题目链接) 题意 一个1*n的棋盘,棋盘上一个隔一个的放着个黑棋和白棋,最左端是白棋,最右端 ...
随机推荐
- 用 Flutter 和 Firebase 轻松构建 Web 应用
作者 / Very Good Ventures Team 我们 (Very Good Ventures 团队) 与 Google 合作,在今年的 Google I/O 大会上推出了 照相亭互动体验 ( ...
- Java面试必知必会(扩展)——Java基础
float f=3.4;是否正确? 不正确 3.4是双精度,将双精度赋值给浮点型属于向下转型,会造成精度损失: 因此需要强制类型转换: 方式一:float f=(float)3.4 方式二:float ...
- 「题解」agc031_e Snuke the Phantom Thief
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:洛谷 AT4695.AtCoder agc031_e. 题意简述 在二维平面上,有 \(n\) 颗珠宝,第 \(i\) 颗 ...
- 一文讲全了Python 类和对象内容
摘要:这是一个关于 Python 类和对象的全部内容. 本文分享自华为云社区<从零开始学python | Python 类和对象-面向对象编程>,原文作者:Yuchuan . Pytho ...
- 我的物联网大学【第二章】:Luat的出世
壹 启动火种 有一位软件行业的大神,名字叫做许小刚. 小刚是一位憨厚的年轻的码农,嵌入式.后端.前端,无所不能,是一个很牛的物联网全栈工程师,也是一家物联网软件公司的创始人兼CEO. 有次跟我.老陆. ...
- 【floyd】8.29题解-path
path 题目描述 这次的任务很简单,给出了一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除 ...
- WPF使用 INotifyPropertyChanged 实现数据驱动
如下图,有这么一个常见需求,在修改表单明细的苹果价格时,总价会改变,同时单据总和也随之改变. 按照Winfrom事件驱动的思想来做的话,我们就需要在将UI的修改函数绑定到CellEdit事件中来实现. ...
- OpenResty高并发
在电商项目中所有的访问都是通过首页访问进去的,那么首页门户的访问频率会是非常高的,用我们专业术语来说就是并发量高,这时问题就来了,并发量高我们在做程序时就要保证首页的抗压能力强,而且还要保证抗压的同时 ...
- Linux常用命令详解下
Linux常用命令详解 目录 一.Linux常用命令 1.1.查看及切换目录(pwd.cd.ls.du) 1.2.创建目录和文件(mkdir.touch.ln) 1.3.复制.删除.移动目录和文件(c ...
- 升级openssl并重新编译Nginx
在漏洞扫描的时候出现"启用TLS1.0"的安全漏洞,描述为:不被视为 PCI 数据安全标准,推荐使用TLS1.2及以上版本: 我这边服务器使用的是CentOS7,默认自带的open ...