百炼3752:走迷宫--栈实现dfs
3752:走迷宫
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
- 一个迷宫由R行C列格子组成,有的格子里有障碍物,不能走;有的格子是空地,可以走。
给定一个迷宫,求从左上角走到右下角最少需要走多少步(数据保证一定能走到)。只能在水平方向或垂直方向走,不能斜着走。 - 输入
- 第一行是两个整数,R和C,代表迷宫的长和宽。( 1<= R,C <= 40)
接下来是R行,每行C个字符,代表整个迷宫。
空地格子用'.'表示,有障碍物的格子用'#'表示。
迷宫左上角和右下角都是'.'。 - 输出
- 输出从左上角走到右下角至少要经过多少步(即至少要经过多少个空地格子)。计算步数要包括起点和终点。
- 样例输入
-
5 5
..###
#....
#.#.#
#.#.#
#.#.. - 样例输出
-
9
【分析】 本题用递归实现起来不方便,因此用一个结构模拟走迷宫的过程:1 struct node {
2 int x,y; //节点坐标
3 int step; //到达该节点需要的步数
4 node(int x,int y,int step) : x(x),y(y),step(step) {};
5 };此处,node表示迷宫中的一个“节点”。
用栈实现dfs走迷宫的思想:(1) 将起始节点入栈;
(2) 将起始节点出栈,作为“当前所在的节点”;
(3) 将“当前所在的节点”所能到达的所有节点入栈(这便是下一步所有的路);
(4) 栈顶节点出栈,作为下一步的“当前所在的节点”。
(5) 重复上述过程,直到走到终点。
由于栈后进先出的特点,因此每一个出栈作为“当前所在的节点”的节点一定是上一步刚刚入栈的节点(即上一步的“当前所在的节点”所能直接到达的某个下一
步的节点),因此栈实现的是dfs(而非bfs)。
【代码】1 #include <iostream>
2 #include <stack>
3 using namespace std;
4
5 const int maxr = 45;
6 const int maxc = 45;
7 char board[maxr][maxc];
8 bool visited[maxr][maxc];
9 int R,C;
10 int mov[4][2] = { {0,1},{0,-1},{1,0},{-1,0} };
11
12 struct node {
13 int x,y; //节点坐标
14 int step; //到达该节点需要的步数
15 node(int x,int y,int step) : x(x),y(y),step(step) {};
16 };
17
18 bool check(int x,int y)
19 {
20 if( x <= R && x >= 1 && y <= C && y >= 1 && board[x][y] == '.'
21 && !visited[x][y] )
22 return true;
23 return false;
24 }
25
26 int dfs(int x,int y)
27 {
28 stack<node> s;
29 node start(x,y,1);
30 s.push(start);
31
32 //栈仅是工具,真正的动态dfs过程从while循环中才开始,
33 //从栈中取出一个节点,相当于确定了目前所在的节点
34 while( !s.empty() ) {
35 node cur = s.top();
36 s.pop();
37
38 //以下for循环把当前能到达的所有点入栈
39 for( int i=0; i<4; i++ ) {
40 int ix = cur.x + mov[i][0];
41 int iy = cur.y + mov[i][1];
42 if( !check(ix,iy) ) continue;
43
44 node nxt(ix,iy,cur.step+1); //创造下一个合法节点
45
46 //判断:如果已经到目标点直接返回答案
47 if( nxt.x == R && nxt.y == C ) {
48 return nxt.step; //(1)
49 }
50 visited[nxt.x][nxt.y] = true; //不加这句,会导致已走过的节点多次入栈,造成死循环
51 //入栈了的节点今后一定都能访问到,因此不用担心漏掉"可走的路"
52 s.push(nxt);
53 }
54 }
55
56 return -1; //若栈中所有节点都已经取出,程序走到了此处(而不是在(1)处返回),
57 //说明终点无法走到
58 }
59
60 int main()
61 {
62 cin >> R >> C;
63 for( int i=1; i<=R; i++ ) {
64 for( int j=1; j<=C; j++ ) {
65 cin >> board[i][j];
66 }
67 getchar(); //除行尾回车
68 }
69 int ans = dfs(1,1);
70
71 cout << ans << endl;
72 return 0;
73 }本题使用bfs实现也可以,只需要把栈换成队列就行了。
百炼3752:走迷宫--栈实现dfs的更多相关文章
- 数据结构之 栈与队列--- 走迷宫(深度搜索dfs)
走迷宫 Time Limit: 1000MS Memory limit: 65536K 题目描述 一个由n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m),每次可以向上下左右四个方 ...
- SDUT-2449_数据结构实验之栈与队列十:走迷宫
数据结构实验之栈与队列十:走迷宫 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 一个由n * m 个格子组成的迷宫,起 ...
- sdut 2449走迷宫【最简单的dfs应用】
走迷宫 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_ 题目描述 一个由n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m) ...
- NYOJ306 走迷宫(dfs+二分搜索)
题目描写叙述 http://acm.nyist.net/JudgeOnline/problem.php?pid=306 Dr.Kong设计的机器人卡多非常爱玩.它经常偷偷跑出实验室,在某个游乐场玩之不 ...
- HDU 2102 A计划(BFS/DFS走迷宫)
A计划 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- C语言动态走迷宫
曾经用C语言做过的动态走迷宫程序,先分享代码如下: 代码如下: //头文件 #include<stdio.h> #include<windows.h>//Sleep(500)函 ...
- 洛谷P1238 走迷宫
洛谷1238 走迷宫 题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束点都是用两个 ...
- BZOJ 2707: [SDOI2012]走迷宫( tarjan + 高斯消元 )
数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一 ...
- BZOJ 2707: [SDOI2012]走迷宫 [高斯消元 scc缩点]
2707: [SDOI2012]走迷宫 题意:求s走到t期望步数,\(n \le 10^4\),保证\(|SCC| \le 100\) 求scc缩点,每个scc高斯消元,scc之间直接DP 注意每次清 ...
随机推荐
- 记一次 .NET 某旅行社Web站 CPU爆高分析
一:背景 1. 讲故事 前几天有位朋友wx求助,它的程序内存经常飙升,cpu 偶尔飙升,没找到原因,希望帮忙看一下. 可惜发过来的 dump 只有区区2G,能在这里面找到内存泄漏那真有两把刷子..., ...
- .NET平台系列7 .NET Core 体系结构详解
系列目录 [已更新最新开发文章,点击查看详细] .NET Core 是基于.NET Framework 为基础,借鉴了其优秀的思想与强大的功能,经过重新设计与构建,实现了.NET Fram ...
- UVA 160 - Factors and Factorials
Factors and Factorials The factorial of a number N (written N!) is defined as the product of all t ...
- Django(26)HttpResponse对象和JsonResponse对象
HttpResponse对象 Django服务器接收到客户端发送过来的请求后,会将提交上来的这些数据封装成一个HttpRequest对象传给视图函数.那么视图函数在处理完相关的逻辑后,也需要返回一个响 ...
- 有哪些适用于律师事务所的CRM系统?
中国的经济发展和政治稳定给律师行业带来了巨大的空间.而互联网的发展也让律师事务所遍地开花.如何在大大小小的律所中脱颖而出,是每个律所都迫切需要解决的问题.为了让您的律师事务所在激烈的竞争中脱颖而出,今 ...
- 消息队列RabbitMQ(五):死信队列与延迟队列
死信队列 引言 死信队列,英文缩写:DLX .Dead Letter Exchange(死信交换机),其实应该叫做死信交换机才更恰当. 当消息成为Dead message后,可以被重新发送到另一个交换 ...
- zimbra启用SMTP认证
zmprov modifyServer {{ you domain }} zimbraMtaTlsAuthOnly FALSE zmcontrol restart 查看对应配置 zmprov getS ...
- 【转载】Python 代码调试技巧
https://www.ibm.com/developerworks/cn/linux/l-cn-pythondebugger/ Python 代码调试技巧 张 颖2012 年 5 月 03 日发布 ...
- django访问mysql数据库--模型(model)
一.安装: sudo pip install mysql-connector-python sudo pip install MySQL-python 异常情况,如果提示pip超时 curl http ...
- xl release 安装
前提,该版本需要jdk-1.8以上(包括1.8),内存大于等于2G,磁盘最小空间2G,操作系统windows或者unix-family xl release是一个端到端的管道编排工具. 下载XL-re ...