软件安装

内存限制:128 MiB 时间限制:1000 ms 标准输入输出
 
 

题目描述

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一 些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的 是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一 次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

输入格式

第1行:N,M (0<=N<=100.0<=M<=500)

第2行:W1,W2,…,Wi,…,Wn(0<=Wi<=M)

第3行:V1,V2,…,Vi,…,Vn(0<=Vi<=1000)

第4行:D1,D2,…,Di,…,Dn(0<=Di<=N,Di≠i)

输出格式

一个整数,代表最大价值。

样例

样例输入

3 10
5 5 6
2 3 4
0 1 1

样例输出

5

没什么好说的。

非常简单的树dp

10分算法

其实是你dp打错了才会10分。

1个注意点(由于博主沙雕打法导致的)

    if(x!=0)
{
for(ll j=m;j>=w1[x];j--)
f[x][j]=f[x][j-w1[x]]+v1[x];
for(ll j=w1[x]-1;j;j--)
f[x][j]=0;
}

没清零!(上面给它赋值了但实施上它本来就不该有值)

40分算法

没打tarjan就会40分。

事实上当你发现你一直40wrong ans并且改不出来时就应该想想tarjan

100分

如果打了tarjan就100分了。

和某个叫「选课」的题特别像。

选课会打这个就会。

以下是本人丑陋的代码。

#include<bits/stdc++.h>
#define ll long long
#define A 2100
using namespace std;
ll ver[A],f[A][A],fa[A],dis[A],deep[A],chatot=0,root,sum[A],w[A],d[A],v[A],num=0,top=0,ins[A],sta[A],dfn[A],low[A],cnt=0,scc[110][110],belong[A];
ll head2[A],head[A],nxt[A],nxt2[A],ver2[A],tot2=0,tot=0,du[A],v1[A],w1[A];
bool flag[A],vis[A];
ll n,m,k,t,xx,yy,zz;
inline ll read(){ll f=1,x=0;char ch=getchar();while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
inline void add(ll x,ll y){fa[y]=x,ver[++tot]=y,nxt[tot]=head[x],head[x]=tot;}
inline void add2(ll x,ll y){ver2[++tot2]=y,nxt2[tot2]=head2[x],head2[x]=tot2;}
inline void rebuilt()
{
for(ll i=1;i<=n;i++)
{
for(ll j=head[i];j;j=nxt[j])
{
ll y=ver[j];
if(belong[y]!=belong[i])
add2(belong[i],belong[y]),du[belong[y]]++;
}
}
}
inline ll tarjan(ll x)
{
dfn[x]=low[x]=++num;
sta[++top]=x;ins[x]=1;
for(ll i=head[x];i;i=nxt[i])
{
ll y=ver[i];
if(dfn[y]==0)
{
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(ins[y])
low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x])
{
++cnt;
ll yy=0;
while(1)
{
yy=sta[top--];
ins[yy]=0;
belong[yy]=cnt;
v1[cnt]+=v[yy];
w1[cnt]+=w[yy];
if(yy==x)
break; }
}
}
void dfs(ll x)
{
f[x][0]=0;
for(ll i=head2[x];i;i=nxt2[i])
{
ll y=ver2[i];
dfs(y);
for(ll j=m;j>=0;j--)
for(ll k=j;k>=0;k--)
f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]);
}
if(x!=0)
{
for(ll j=m;j>=w1[x];j--)
f[x][j]=f[x][j-w1[x]]+v1[x];
for(ll j=w1[x]-1;j;j--)
f[x][j]=0;
}
}
int main()
{
n=read(),m=read();
for(ll i=1;i<=n;i++)
w[i]=read();
for(ll i=1;i<=n;i++)
v[i]=read();
for(ll i=1;i<=n;i++)
{
d[i]=read();
add(d[i],i);
}
for(ll i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
rebuilt();
for(ll i=1;i<=cnt;i++)
{
if(!du[i])
add2(0,i);
}
dfs(0);
cout<<f[0][m]<<endl;
}

bzoj2427 软件安装! 树dp的更多相关文章

  1. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  2. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  3. [BZOJ2427]软件安装

    Problem 每个软件都要安装某些软件才能安装,而且都有体积和价值,求安装的价值最大值 Solution 对于每个环,我们可以知道必须全部一起取或者不取,因此我们先用Tarjan缩点 然后我们用一个 ...

  4. [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP

    题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  5. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  6. [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)

    题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...

  7. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  8. 【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

    [BZOJ2427][HAOI2010]软件安装(动态规划,Tarjan) 题面 BZOJ 洛谷 题解 看到这类题目就应该要意识到依赖关系显然是可以成环的. 注意到这样一个性质,依赖关系最多只有一个, ...

  9. 题解【bzoj2427 [HAOI2010]软件安装】

    Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...

随机推荐

  1. .Net Core平台下,添加包的引用

    一个程序的开发过程中离不开对程序集(Assembly,将程序集打包好,就成为一个.dll的包文件,它也叫动态链接库(Dynamic Link Library​))的依赖,在以前ASP.Net时代,微软 ...

  2. 玩转直播系列之RTMP协议和源码解析(2)

    一.背景 实时消息传输协议(Real-Time Messaging Protocol)是目前直播的主要协议,是Adobe公司为Flash播放器和服务器之间提供音视频数据传输服务而设计的应用层私有协议. ...

  3. 发现数据结构与算法之美的第n次重新学习 ——— 初遇数据结构与算法(了解)

    你的数据结构怎么学的?提起数据结构,计算机与软件,it行业内无人不知,无人不晓.但是,当你真正的去通过数据结构与算法内容去实践内容时,真的能联系起来吗?那肯定的 不管是考研还是做项目,数据结构都是必学 ...

  4. golang:Channel协程间通信

    channel是Go语言中的一个核心数据类型,channel是一个数据类型,主要用来解决协程的同步问题以及协程之间数据共享(数据传递)的问题.在并发核心单元通过它就可以发送或者接收数据进行通讯,这在一 ...

  5. [Qt] 事件机制(四)

    滚轮事件:滚动滚轮实现窗口大小缩放 widget.h中增加: protected: void wheelEvent(QWheelEvent *event) Q_DECL_OVERRIDE; void ...

  6. 强哥jQuery学习笔记

    js对象: 1.js内置对象 2.js元素对象 3.jquery对象 js特效: 1.js元素对象 2.jQuery对象 jQuery学习: 1.核心函数 2.选择器 3.筛选 4.文档处理 5.属性 ...

  7. CentOS7中下载RPM及其所有的依赖包

    CentOS7中下载RPM及其所有的依赖包 转载beeworkshop 最后发布于2019-09-28 07:43:40 阅读数 1096  收藏 展开 利用 Downloadonly 插件下载 RP ...

  8. Linux_搭建Samba服务(匿名访问)

    [RHEL8]-SMBserver:[RHEL7]-SMBclient !!!测试环境我们首关闭防火墙和selinux(SMBserver和SMBclient都需要) [root@localhost ...

  9. 6T硬盘分区

    6T硬盘分区 1.umount /data1   #  如果正在使用需要此命令卸载. 2.parted /dev/sdb     # parted 分区工具,选择要分区的硬件设备 mklabel gp ...

  10. 3 当某个应用的CPU使用达到100%,该怎么办?

    你最常用什么指标来描述系统的 CPU 性能呢?我想你的答案,可能不是平均负载,也不是 CPU 上下文切换,而是另一个更直观的指标-- CPU 使用率.CPU 使用率是单位时间内 CPU 使用情况的统计 ...